
Vol.:(0123456789)

Journal of Real-Time Image Processing (2024) 21:64
https://doi.org/10.1007/s11554-024-01442-8

SURVEY

Survey of convolutional neural network accelerators
on field‑programmable gate array platforms: architectures
and optimization techniques

Hyeonseok Hong1 · Dahun Choi1 · Namjoon Kim1 · Haein Lee1 · Beomjin Kang1 · Huibeom Kang1 · Hyun Kim1

Received: 23 November 2023 / Accepted: 20 February 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
With the recent advancements in high-performance computing, convolutional neural networks (CNNs) have achieved remark-
able success in various vision tasks. However, along with improvements in model accuracy, the size and computational com-
plexity of the models have significantly increased with the increasing number of parameters. Although graphics processing
unit (GPU) platforms equipped with high-performance memory and specialized in parallel processing are commonly used
for CNN processing, the significant power consumption presents challenges in their utilization on edge devices. To address
these issues, research is underway to design CNN models using field-programmable gate arrays (FPGAs) as accelerators.
FPGAs provide a high level of flexibility, allowing efficient optimization of convolution operations, which account for a
significant portion of the CNN computations. Additionally, FPGAs are known for their low power consumption compared to
GPUs, making them a promising energy-efficient platform. In this paper, we review and summarize various approaches and
techniques related to the design of FPGA-based CNN accelerators. Specifically, to comprehensively study CNN accelera-
tors, we investigate the advantages and disadvantages of various methods for optimizing CNN accelerators and previously
designed efficient accelerator architectures. We expect this paper to serve as an important guideline for future hardware
research in artificial intelligence.

Keywords Convolutional neural network · Accelerator · Field-programmable gate array (FPGA) · Design optimization ·
Data flow

1 Introduction

In recent years, the use of convolutional neural networks
(CNNs) has significantly increased in various image
processing fields, including classification [1, 2], object

detection [3, 4], and segmentation [5, 6]. However,
high-performance deep CNNs require substantial com-
putational power, with operations such as matrix multi-
plication (MM) demanding on the order of 10–1000 giga-
floating-point operations per second (GFLOPS) [1, 2, 7,
8]. Therefore, achieving high throughput and power effi-
ciency in computing systems is crucial for the practical
utilization of CNNs [9]. Traditionally, central processing Hyeonseok Hong and Dahun Choi have contributed equally to this

work.

 * Hyun Kim
 hyunkim@seoultech.ac.kr

 Hyeonseok Hong
 hs_hong@seoultech.ac.kr

 Dahun Choi
 dahun926@seoultech.ac.kr

 Namjoon Kim
 rlarla2626@seoultech.ac.kr

 Haein Lee
 haeinlee@seoultech.ac.kr

 Beomjin Kang
 beomjin@seoultech.ac.kr

 Huibeom Kang
 huibeom_k@seoultech.ac.kr

1 Department of Electrical and Information Engineering,
Research Center for Electrical and Information Technology,
Seoul National University of Science and Technology, 232
Gongneung-ro, Nowon-gu, Seoul 01811, Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-024-01442-8&domain=pdf

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 2 of 21

units (CPUs) have been limited by their computational
throughput, which ranges from 10 to 100 GFLOPS, ham-
pering their ability to completely support real-time CNN
processing [10]. By contrast, GPUs, such as NVIDIA
A100, exhibit a peak performance of 19.5 tera-FLOPS,
enabling real-time operation of CNNs, thereby being
extensively used in a wide range of applications [11].
However, GPUs face challenges such as significant power
consumption (often exceeding 400 W), large and heavy
form factors, and expensive prices. Consequently, they are
primarily used in server environments and are impracti-
cal for deployment on edge devices [12]. Thus, there is a
growing need for new hardware platforms to enable the
practical deployment of CNN applications across diverse
devices.

To address this issue, a CNN accelerator system
utilizing field-programmable gate arrays (FPGAs)
has been proposed, offering significant computing
acceleration while maintaining high energy efficiency
[13–19]. Unlike traditional instruction-based processors,
such as CPUs and GPUs, FPGAs leverage register-transfer
level (RTL) designs to enable flexible and reconfigurable
designs. By implementing convolution (CONV) and
MM operations, which constitute a significant portion
of CNN operations, at the gate level and optimizing
the computational f low for different models, FPGA
systems with limited resources can be used to design
various CNN models with low latency and high power
efficiency. However, even when implementing the same
CNN model, FPGA-based CNN accelerators exhibit
varying hardware utilization and throughput depending on
the FPGA platform and design methodology. Therefore,
it is important to achieve optimal performance (i.e.,
throughput and power efficiency) within the constraints
of limited resources, such as block RAM (BRAM), digital
signal processing (DSP) blocks, lookup table (LUT),
and Flip-Flop (FF). Therefore, various computation
and memory optimization techniques and efficient
architecture designs that consider FPGA resources
and model structures are essential [20–22]. This paper
summarizes the different architectures and optimization
techniques used for designing FPGA-based CNN
accelerators. In the Sect. 2, we provide a background
on CNNs and FPGAs. In the Sect. 3, we provide a brief
overview of the techniques required for CNN accelerator
design. In the Sect. 4, we examine the optimization
methods for maximizing hardware utilization and parallel
computing. In the Sect. 5, we explore the architectures of
various FPGA-based CNN accelerators. In the Sect. 6,
different CNN models implemented on various FPGA
chips are compared. Finally, in the Sect. 7, we provide a
summary of this paper and discuss the prospects for CNN
accelerators.

2 Preliminary

2.1 Convolution neural network

A CNN is a deep-learning model that is primarily used in
image processing and pattern recognition [1, 2, 23–25].
It comprises multiple layers for feature extraction (e.g.,
CONV and fully connected (FC) layer) and nonlinear
functions (e.g., activation and pooling). During the CONV
operation, multiplication operations are performed as the
filter slides across the input feature map with a specific
stride, summing the products to generate the output
feature map. This process allows the extraction of local
information from the image. Iterative stacking of these
layers allows extraction of low-level features, such as
corners and edges, in the early layers, progressing toward
more abstracted high-level features in the deeper layers.
A CNN applies an activation function to each feature
and reduces the resolution of the feature map through
pooling. This process introduces nonlinearity into the
CNN and facilitates efficient feature extraction from the
CONV layers. The extracted features are subsequently
passed through the FC layer, which is structured around
interconnected input and output nodes that enable the
calculation of the final output for classification and
prediction. As a result, CNNs demonstrate superior
accuracy in image pattern recognition compared to
conventional machine learning techniques. Consequently,
the CNN has been widely applied across various domains,
such as classification [1, 2], object detection [3, 4],
segmentation [5, 6], and super-resolution [26].

The CONV operation is crucial in CNNs because
it generates an output feature map by performing
multiply–accumulate (MAC) operations on an input
feature map and weighted filter. Figure 1a illustrates a
conceptual diagram of the CONV operation. Here, Kx and
Ky represent the size of the filter, with M and N denoting
the number of channels in the input and output feature
maps, respectively; W, H, C, and R correspond to the
width and height of the input and output feature maps,
respectively. A filter of size M ∗ Ky ∗ Kx is overlapped
with the M ∗ H ∗ W input feature map to obtain single-
pixel output features through element-wise multiplication
and addition. The filter moves based on stride size while
performing the operation C ∗ R times and repeating this
for N filters, thereby obtaining the final output feature map
of dimension N ∗ C ∗ R . The CONV operation performed
in one layer can be expressed in pseudocode, as shown in
Fig. 1b, and the number of operations (i.e., OperCONV) is
calculated, as follows:

(1)OperCONV = Kx ∗ Ky ∗ M ∗ C ∗ R ∗ N.

Journal of Real-Time Image Processing (2024) 21:64 Page 3 of 21 64

2.1.1 Convolution operation

2.1.2 Conventional general matrix multiply architecture

CONV operations, comprising six loops, may experience
performance degradation due to branch instruction
when executed in conventional computing environments
such as CPUs and GPUs. To address this challenge, the
general matrix multiplication (GEMM) method has been
extensively adopted, whereby the 3D input feature map is
elegantly reshaped into an (N ∗ K ∗ K) × (R ∗ C) matrix,
and the 4D filter is reshaped into an M × (N ∗ K ∗ K)
matrix, subsequently implementing the CONV operation
through MM. This methodology facilitates the high-weight
reuse pattern in CONV operations, leading to a significant
throughput enhancement. Moreover, it is sufficiently versatile
to be applied to a wide range of model configurations,
allowing the handling of highly complex tasks. Nevertheless,
GEMM operations have their limitations. These include
latency issues during the reshaping process, considerable
memory overhead arising from substantial matrix sizes, and
increased power consumption [27]. Consequently, there is a
pressing need for novel computing platforms and strategic
optimization formulations for CONV operations, particularly
to augment the efficiency of CNN inference.

2.2 Field‑programmable gate array

FPGAs are reconfigurable hardware devices suitable for
digital circuit implementation. FPGAs employ program-
mable logic (PL) based on hardware description languages
for circuit design and can be categorized into two types.
The first type, peripheral component interconnect express
(PCIe)-based FPGAs, are used in large-scale data centers
without a processing system (PS) and excel in accelerating

computation tasks with massive data processing require-
ments [28]. Notable examples are Xilinx Alveo [29] and
Intel PAC chip [30]. By contrast, SoC FPGAs, which have
an integrated PS, allow designs within the same develop-
ment environment. Owing to their reasonable pricing, low
power consumption, and compact size, they are extensively
used in mobile and edge devices for image processing, signal
processing, and deep-learning applications [31]. This paper
focuses on the CNN accelerator implemented using SoC
FPGAs. In SoC FPGAs, the PL enables users to achieve their
desired hardware design by implementing anything from
simple logic to complex function modules at the gate level.
Meanwhile, PS handles complex operations using process-
ing cores, facilitates data communication between off-chip
memory and PL through memory interfaces, and enables
interconnection with peripherals (i.e., sensors and displays),
allowing the construction of complex system-on-chip cir-
cuits [21]. The design of CNN accelerators on FPGAs offers
several advantages over other hardware devices (e.g., CPU
and GPU) in terms of design flexibility, power efficiency,
and latency [32]. First, the flexible and configurable nature
of FPGAs enables the optimized design of various CNN
architectures and layer operators. This advantage allows flex-
ible adaptation to new models or algorithm changes. Sec-
ond, FPGAs achieve high power efficiency by performing
only the optimal calculations required for CNNs. This is
particularly beneficial in power-constrained environments,
such as mobile devices and edge computing [12]. Third,
FPGAs offer very low latency by enabling the direct con-
nection of peripherals to logic through parallel processing
and I/O interfaces. This advantage is particularly relevant
in fields where low latency is essential, such as autonomous
vehicles. FPGAs consist of resources such as PS, arithmetic
units (LUTs, FFs, and DSP blocks), and on- and off-chip
memory (dynamic random-access memory). This section
elucidates the functions of each of these resources in accel-
erator design. Table 1 lists the specifications of FPGA chips
commonly employed in CNN accelerator research. Notably,

Fig. 1 Illustration of a convolution operation and parameter shape and b pseudo code

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 4 of 21

FPGA boards used in previous papers for which experimen-
tal results have been presented, were included in this paper.

2.2.1 Processing system

The processor core embedded in the PS of FPGAs operates
separately from the PL. Considering the high performance
and cost of the processor core, it is used to handle the
complex operations in CNN implementations that are
challenging or resource-intensive to implement in PL, such
as softmax and non-maximum suppression. Such data are
communicated between the off-chip memory and PL via
direct memory access (DMA).

2.2.2 Arithmetic units

Arithmetic units within FPGAs are hardware blocks for
performing various arithmetic operations. FPGAs include
large-scale arithmetic blocks with low complexity. Typically,
arithmetic operations can be performed using LUTs, which
provide output values corresponding to the input values and
FFs, which store data temporarily. FPGAs contain a signifi-
cant number of LUTs and FFs, allowing the implementation
of complex logic operations through their interconnection.
This enables the parallel processing of multiple operations,
thereby increasing hardware utilization. DSP slices are spe-
cialized hardware blocks within an FPGA that enable the fast
execution of signal processing algorithms at high speeds.
The DSP slices contain components such as multipliers,
accumulators, and registers. These elements accelerate the

MAC calculations, enabling high-performance computa-
tions. Owing to their high computational throughput and
superior operational efficiency, DSP slices are primarily
used to implement processing elements (PEs) for the most
critical CONV operations in CNN accelerators [33].

2.2.3 On‑chip memory

On-chip memory in FPGAs, known as BRAM, stores feature
maps, filter weights, and other data, enabling efficient data
flow design by synchronously delivering data to the PE.
High-end FPGAs feature an on-chip memory called ultra
RAM (URAM). With a capacity of 288 Kb per slice, URAM
offers nine times the storage capacity of standard BRAM,
which holds 32 Kb per slice. This makes URAM particularly
suitable for data-intensive applications. Although on-chip
memory provides fast access, it has a significant size
limitation, as shown in Table 1. Therefore, in CNN
accelerators, there is a limitation that all parameters (e.g.,
filters, and feature maps) cannot be stored using on-chip
memory, and most designs eventually require off-chip
memory access.

2.2.4 Off‑chip memory

Off-chip memory is typically implemented using dynamic
random-access memory (DRAM), which offers a relatively
large capacity and is peripherally connected to the FPGA
chip. In general, off-chip memory is used to store all the
necessary filters for the CNN as well as the output feature

Table 1 Hardware resources in various FPGAs

FPGA Chip Processor core DSPs LUTs FFs On-chip Memory (Mb)

Intel Stratix V 5SGXA7 Nios® II processor 768 469,440 938,880 50.0
Intel Stratix 10 GX 10 M Quard-core ARM Cortex-A53 MPCore with

CoreSight
3456 693,2160 13,864,320 259.0

Intel Arria 10 GX 1150 Dual-core ARM Cortex-A9 MPCore with
CoreSight

1518 854,400 1,708,800 54.3

Xilinx Zynq-7000 XC7Z020 Dual-core ARM Cortex-A9 MPCore with
CoreSight

220 53,200 106,400 4.9

Xilinx Zynq-7000 XC7Z045 Dual-core ARM Cortex-A9 MPCore with
CoreSight

900 218,600 437,200 19.2

Xilinx Zynq Ultrascale + XCZU2EG Quard-core ARM Cortex-A53 MPCore with
CoreSight

240 47,232 94,464 5.3

Xilinx Zynq Ultrascale + XCZU7EV Quard-core ARM Cortex-A53 MPCore with
CoreSight

1728 230,400 460,800 BRAM 11.0, URAM 27.0

Xilinx Zynq Ultrascale + XCZU9EG Quard-core ARM Cortex-A53 MPCore with
CoreSight

2520 274,080 548,160 32.1

Xilinx Virtex-7 XC7VX485T MicroBlazeTM processor 2800 303,600 607,200 37.0
Xilinx Virtex-7 XC7VX690T MicroBlazeTM processor 3600 433200 866400 53.0
Xilinx Virtex Ultrascale + XCVU9P Quard-core ARM Cortex-A53 MPCore with

CoreSight
6840 1,182,240 2,364,480 BRAM 75.9 URAM 270.0

Journal of Real-Time Image Processing (2024) 21:64 Page 5 of 21 64

maps and input images resulting from the CONV operations
within the PL. However, communication between the PL and
off-chip memory is typically limited to the PS and DMA,
resulting in relatively high latency and power consumption.
Therefore, most CNN accelerator designs aim to minimize
off-chip memory access [13, 34, 35].

3 Brief overview of CNN accelerator design

This paper primarily focuses on FPGA accelerator design,
examining two key aspects for effective implementation
(see Fig. 2). The first is the optimization technique. At the
hardware level, ongoing research aims to maximize the uti-
lization of parallel processing techniques, such as unrolling
and batching, to alleviate computational bottlenecks and
improve performance. Additionally, studies have sought to
minimize DRAM access costs through double buffering, til-
ing, distributed BRAM, and memory hierarchy utilization.
Compression methods, including quantization, pruning, and
winograd, have also been explored to efficiently utilize lim-
ited resources by reducing MAC operation costs. The effec-
tive integration of these techniques is crucial for developing
FPGA-based CNN accelerators that reduce computational
complexity and minimize memory access for enhanced

performance. The second key factor is the hardware archi-
tectural design, which is critical in designing an efficient
implementation of CNN characteristics. The performance
of an accelerator can be improved based on the design of
the processing unit (PU). Research on fusing operations
between adjacent layers aims to increase operational effi-
ciency and reduce memory access costs. Additionally, vari-
ous architectures can be designed, such as systolic arrays
(SAs), leveraging a pipelined approach with multiple PE and
multi-PU to prevent the idle state of PEs. Finally, given the
operational characteristics of CNNs, notably, a technology
that divides and processes calculations between the CPU
and FPGA, known as CPU-FPGA collaborative computing,
higher performance can be achieved compared to a single
computing platform.

4 Optimization techniques of CNN
accelerators for FPGA implementation

To implement CNN models efficiently on FPGA systems
with limited memory capacity and available resources,
employing various optimization techniques is crucial.
These techniques generally include computational
optimization [15, 16, 36–38], memory optimization [34,

Fig. 2 Classification of various approaches for CNN accelerator design

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 6 of 21

39–48], and compression [18, 49–55]. Integrating these
techniques effectively is essential in developing FPGA-
based CNN accelerators, as they contribute to optimizing
its performance by reducing computational complexity and
minimizing memory accesses.

4.1 Computational optimization

Representative computational optimization techniques that
improve the performance and maximize the efficiency of
CNN accelerators on FPGAs include unrolling to improve
parallel processing and tiling to reduce memory access costs.
Repetitive calculations can be executed at once through
unrolling, and overall system performance can be improved
by minimizing memory access through tiling.

4.1.1 Unrolling

Unrolling is a technique used to reduce the number of
iterations in a loop. It is an optimization technique aimed
at improving performance by minimizing the overhead
caused by the large number of iterations involved in the
CONV operation. In FPGAs, it is possible to reduce com-
putation costs more effectively by utilizing the parallel-
ized hardware structure to perform multiple computations
simultaneously. As depicted in Fig. 3, the iteration of the

CONV layer consists of four levels: kernel loop (Px,Py),
input channel loop (Pm), intra-channel loop (Pw,Ph), and
output channel loop (Pn). By applying the unrolling tech-
nique to the kernel loop, multiple kernel elements can be
processed simultaneously, and by applying the unrolling
technique to the input channel loop, CONV operations can
be performed at multiple feature map locations simultane-
ously. Moreover, unrolling the intra-channel loop enables
concurrent operations on multiple input channels, while
unrolling the output channel loop allows simultaneous
operations on multiple output channels. Unrolling these
loops at different levels in CONV operations effectively
reduces overhead. For instance, unrolling the intra-channel
loop minimizes memory access by leveraging weight reuse
and facilitates parallel processing of multiple multiplica-
tion operations. Rahman et al. [15] proposed a new archi-
tecture called the input-recycling CONV array of neurons,
which optimizes memory and computational resources.
However, this architecture suffered from high computa-
tional complexity as a disadvantage. To address this issue,
the internal CONV operation was optimized by unroll-
ing the intra and output channels, thereby reducing the
complexity of the architecture. Ma et al. [16] designed
a CONV and pooling layer to parallelly output adjacent
feature maps, which led to an issue of overlapping data
and computations in the normalization module. The output

Fig. 3 Four levels of convolu-
tion loop unrolling from [43]

Journal of Real-Time Image Processing (2024) 21:64 Page 7 of 21 64

channel loop was unrolled to avoid data overlap. In addi-
tion, the design incorporated the reuse of intermediate
pixels to save memory. Motamedi et al. [36] proposed the
parallel convolution engine (PCE) that leverages paral-
lelism by unrolling the kernel, input, and output loops.
They achieved approximately a 1.9% speed improvement
by unrolling the kernel loop and combining multiplica-
tion and addition units to exploit parallelism on the same
FPGA device. It is, therefore, crucial to choose the appro-
priate unrolling strategy for each loop level, considering
the specific requirements and constraints of the hardware.

4.1.2 Batching

Batching, which processes multiple input images simul-
taneously to enhance the throughput, can be applied to
operations that compose CNNs, such as CONV and FC
layers. In Fig. 4, we can see the application of batching
during FC operations. Using the same weight addressing
for multiple input data operations, it maximizes weight
data reuse, converting vector multiplication into MM,
achieving N times the throughput. Li et al. [37] imple-
mented batching to diminish the weight load required for
FC operations thereby reducing the necessity for off-chip
memory access. Their approach effectively maximizes the
reuse of FC weights, allowing for computations on multi-
ple input data with minimal DRAM access. Furthermore,
the study introduced a novel technique to counterbalance
the increased output buffer consumption caused by larger
batch sizes in successive FC layer operations, by shift-
ing the weight window addressing pattern from a verti-
cal (Fig. 4b) to a horizontal orientation (Fig. 4c), thus
requiring less space for temporary results. Remarkably,
this technique achieved a performance efficiency of 391
frames per second (FPS) on Xilinx XC7VX690T, demon-
strating its significant impact on computational efficiency.
Jia et al. [38] proposed an accelerator with three levels
(i.e., core, graph, and batch) of scalability for various CNN
model operations. They processed multiple input images
synchronously in the operation unit graph. Leveraging the
characteristic that weights are shared for each input, they
boosted throughput using just one weight buffer and pro-
posed a scalable design capable of 1–8 batch operations.
As a result, through the application of various paralleliza-
tion techniques, the authors achieved 8 × throughput. In
conclusion, although batching can significantly increase
throughput through parallel operations, the resource con-
sumption such as PE or on-chip memory storage required
to process the increased operations due to batch size must
be considered.

4.2 Memory optimization

In addition to Subsection Computational Optimization,
harmonious design between memory, which stores operands
(e.g., CONV filter, FC weight, and feature map), and PE is
necessary to maximize operational efficiency and implement
low-power systems. As introduced in Subsection Field-
programmable gate array, the memory used in FPGA
systems can be largely divided into on-chip memory (e.g.,
SRAM, BRAM, cache, and buffer) and off-chip memory
(e.g., DRAM). Despite the advantages of BRAM fast access
time and high scalability, it is impossible to store all massive
operands, such as those of ResNet-101 [1] (i.e., 44 M weight
parameters, 170 MB) and VGG-16 [7] (138 M weight
parameters, 527 MB), due to the limited capacity of BRAM.
Therefore, the parameters of CNN models must be stored
in DRAM, which provides a larger capacity, and data must
be loaded to the PL via an interface (i.e., AXI) and DMA.

Fig. 4 Illustration of FC operation from [37]. a FC operation single
image processing, b batching FC vertical weight addressing, c hori-
zontal weight addressing

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 8 of 21

However, the energy consumed in DRAM access (i.e.,
640 pJ) is approximately 130× greater than that in SRAM
access (i.e., 5 pJ) [56], and the throughput of accelerators
is negatively impacted due to bandwidth limitations and
long latency. Therefore, this subsection explains memory
optimization methods that reduce off-chip memory access
and maximize the utilization of capacity-limited on-chip
memory to provide an efficient data flow of operations for
the accelerator.

4.2.1 Double buffering

In CNN accelerators, the on-chip memory not only
exchanges data with the off-chip memory but also delivers
operands connected to the PE and stores the results of MAC
operations. However, a single buffer cannot perform both
functions at once, and during communication with the
off-chip memory, the PE becomes idle. This significantly
lowers PE utilization and increases latency. Double buffering
is a method used to address this issue, using two buffers
to simultaneously process data delivery to the PE and data
loading from the off-chip memory. When double buffering
is applied, one buffer communicates with the PE and is
used for the current layer operation, while the other buffer
loads the data necessary for the next layer operation from
the off-chip memory. The roles of the two buffers switch
every time a layer is completed, which is referred to as
“ping-pong”. The advantage of double buffering is that it
can hide latency caused by data transfer, as it can load the
necessary data during the layer operation time. Podili et al.
[39] applied the double buffering technique to the kernel
buffer by connecting one input buffer and several kernel
buffers to the PE. When implementing the VGG-16, they
reduced latency by hiding the data refill time through at least
196 data reuses. Li et al. [40] proposed a block CONV to
minimize off-chip memory access, allowing multiple tiles
to be loaded iteratively and written to the main memory
by partitioning the feature map into 27× 48 small tiles and
then applying double buffering. Bai et al. [41] applied
double buffering to the weight buffer to reduce the latency
of filter loading, which varies for the three types of CONVs
(i.e., standard, depth-wise, point-wise) that compose
MobileNetV2. They were able to implement an accelerator
with a weight buffer size of only 36Kb, with 3.7% usage
of Intel Arria 10 GX 1150. Fan et al. [42] not only used
the traditional classification loss of cross entropy but also
introduced latency and energy as losses in their network
architecture search approach. This allowed them to find the
optimal compressed network within limited resources. By
applying a ping-pong mechanism to both the input feature
map and weight buffer, they managed to hide latency due
to off-chip memory access, achieving a performance of 319
FPS on Intel Arria 10 GX 1150. However, compared to a

single buffer, double buffering has the drawback of resulting
in structural changes that complicate the memory controller
and generally increase on-chip memory usage.

4.2.2 Tiling

In the FPGA implementation of CNN accelerators, the
CONV operation, which accounts for the majority of
computations, is performed through MAC operations within
the PE. Typically, the PE receives the feature input and
weights as operands from on-chip memory (i.e., BRAM).
However, there are capacity limitations regarding holding
feature maps and weights in BRAM, especially as their sizes
increase proportionally with the complexity of the model.
Consequently, the implementation of an accelerator for large
CNN models relies on loading feature maps and weights
from off-chip memory (i.e., DRAM). However, fetching
large amounts of data from DRAM can have a significant
negative impact on layer and network latency [13]. To
address this issue, tiling is employed to fetch the required
feature data from DRAM in block-sized units, known as tiles.
These tiles are then stored in BRAM, allowing for maximum
reuse of fetched data and enabling the computation of
CONV operations in complex models with limited on-chip
memory resources. Tiling divides the input feature map into
T tiles, reducing the on-chip memory requirement to 1/T of
the original size. This enables efficient BRAM utilization
and facilitates the implementation of complex CNN models
on FPGA platforms with limited resources. Ma et al. [43]
defined the latency associated with tiling, including the
intra-tiling loop (on-chip memory access) and inter-tiling
loop (off-chip memory access). They analyzed each tiling
technique to explore the trade-off between on-chip memory
size and external memory access. Then, they proposed a
design methodology to identify the optimal on-chip memory
size and latency. As a result, they implemented VGG on
Intel Arria 10 GX 1150 achieving a throughput of 645 giga
operations per second (GOPS). Zhang et al. [44] addressed
the issue of frequent DRAM access caused by the row-
major representation of feature maps in tiling-applied RTL
designs using high-level synthesis. They proposed cube
index transformation and DRAM layout techniques to
maximize the utilization of DRAM memory burst length
and bit width. Basalama et al. [45] proposed a technique
called “dynamic tiling”, in which a different tiling factor is
assigned to each layer of the network. This approach enables
data feeding between line buffers and results in a 1.7×
performance improvement in terms of latency compared to
traditional uniform tiling methods. Indeed, tiling has some
limitations that need to be considered. One limitation is
the increase in design complexity due to changing access
patterns in on-chip memory. This can introduce additional
challenges in the design process. Additionally, the frequent

Journal of Real-Time Image Processing (2024) 21:64 Page 9 of 21 64

off-chip memory communication in tiling-based designs
can result in power inefficiency, which can be a significant
drawback from a power-efficiency perspective. Therefore, it
is crucial to carefully analyze and address these challenges
when employing tiling techniques so that the overall design
trade-offs can be optimized and the desired performance and
efficiency goals can be achieved.

4.2.3 Distributed BRAM

Distributed BRAM is a method of maximizing PE utilization
by placing dedicated BRAM at the PE. Figure 5a, b show an
overview of centralized BRAM and distributed BRAM. In
centralized BRAM, because all PEs share a global buffer and
data path, a data bottleneck occurs when the data demand
of the PE increases. This results in a significant decrease
in PE utilization due to the increased number of unused
PEs. In contrast, distributed BRAM maintains high PE uti-
lization and increases processing speed through operation
parallelization by placing a dedicated buffer for each PE,
allowing all PEs to be used simultaneously for operations.
Ryu et al. [34] placed a PE and SRAM buffer for each chan-
nel and performed separable channel-wise CONV opera-
tions [23], allowing for various MobileNet [23, 24] designs
through channel stationary techniques. Moreover, by stor-
ing all weights and feature maps used in each channel in
distributed SRAM, they implemented depth-wise separable
CONV operations within MobileNet without accessing off-
chip memory. Gao et al. [46] proposed a tile architecture,
which combines multiple small PE arrays, and implemented
coarse-grained parallelism through data sharing by placing
a buffer for each tile. Aydonat et al. [47] proposed stream
buffer arrays, which supply the input feature map needed for
CONV layer execution to PEs and store the CONV output

in the buffer. By storing filters in each PE cache, they mini-
mized idle computations in the PE. Song et al. [48] proposed
a kernel pruning method called hardware-oriented regular
pruning, utilizing the finite impulse response (FIR) filter,
and implemented a double CONV PE module. By allow-
ing each PE to process two 1D kernel weights and an input
feature map, they designed an efficient pruning-aware accel-
erator. As a result, they achieved a significant 5.83× weight
compression at VGG and reduced the MAC usage by 1.46× ,
while still attaining a high throughput of 110 FPS on Xilinx
XCVU9P. However, when using distributed BRAM, each PE
can only use a small buffer size due to the limited on-chip
memory resources within the FPGA. Moreover, data sharing
between PEs can lead to BRAM access conflicts.

4.2.4 Memory hierarchy Utilization

Memory hierarchy aims to overcome the limited capacity
of on-chip memory and resolve the high latency and power
consumption issues of off-chip memory by operating a
combination of various levels of memory (i.e., DRAM,
cache, buffer, etc.) (see Fig. 5c). Pacini et al. [35] proposed
a method to increase power efficiency by minimizing off-
chip access and drastically reducing on-chip memory
usage. Instead of connecting the on-chip buffer used in
the PE and the off-chip memory, they implemented L1
and L2 cache to store the feature map repeatedly used in
operations in the L1 cache, thereby maximizing data reuse.
Chen et al. [17] established a four-level storage hierarchy
(i.e., off-chip DRAM, global buffer, FIFO array, and
register file) and analyzed the energy cost arising from data
movement in each storage. Pellauer et al. [57] proposed a
“buffet” memory, which borrows the explicit decoupled
data orchestration taxonomy to solve the inefficiency of

Fig. 5 Various CNN accelerator memory system from [37]. a Centralized BRAM, b distributed BRAM, c hierarchical cache

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 10 of 21

implicit data orchestration inherent in traditional caches
and the inflexibility in data reuse found in FIFO. The
authors established a memory hierarchy by dividing the
buffet into three levels and applying it to the tiled-GEMM
operation accelerator, demonstrating energy efficiency that
is 1.53× and 5.39× greater compared to traditional double-
buffered scratchpads and cache, respectively. However,
implementing a memory hierarchy system in FPGA-based
CNN accelerators presents challenges compared to designs
using simple on-chip memory.

4.3 Compression

The compression technique is employed in CNN accelerators
to decrease memory bandwidth and computational
demands. Notably, traditional models such as ResNet-18
and ResNet-50 [1] possess substantial model sizes (i.e.,
ResNet-18: 46.8 MB, ResNet-50: 97.5 MB). Developing
CNN accelerators for these models requires significant
computational resources and frequent DRAM access,
resulting in heightened latency and increased power
consumption. CNN compression techniques are essential
for addressing these challenges. In this section, we explain
quantization, which is one of the most widely utilized
compression methods in CNN accelerator design and
provide a brief overview of other compression techniques,
such as pruning [58, 59] and Winograd [60].

4.3.1 Quantization

Quantization is a compression technique that converts
32-bit floating-point data (FP32) into low-precision integer
or fixed-point formats [61]. Some information is inevitably
lost when converting 32-bit data into low-precision format.
However, accuracy can be recovered through quantization-
aware training, achieving even higher accuracy than that
of the baseline through recent quantization research [54].
By performing INT8 operations instead of the traditional
FP32 operations during CONV in the MAC unit of CNN
accelerators, an approximately 4 × faster inference speed
can be achieved while reducing energy consumption by
approximately 18.5× [62]. In addition, this technique
effectively reduces the size and memory footprint of the
model, making it highly efficient in resource-constrained
environments [53].

Quantization can be classified based on the data format
used in MAC operations. Guo et al. [49] presented a linear
quantization technique in the most widely used INT format.
By converting the weight and activation values of each
layer to integers, this technique offers advantages such as
reduced computational complexity compared to floating-
point formats, improved computational speed, and simplified
hardware implementation. Park et al. [50] quantized the data

format to fixed-point numbers, thereby enabling hardware-
friendly operations through a combination of integers and
shift operations (fraction bits), while also providing an
advantage in terms of accuracy by expressing a wider range
than the integer format. Vogel et al. [51] performed the
CONV operation in logarithmic form by taking logarithms
of weights and activations. Although this method involves
nonuniform quantization intervals, it can significantly
reduce hardware resource usage and power consumption
compared to other data formats by allowing operations in
addition to multiplication. However, quantization using
this method requires a significant number of LUTs, and the
quantizer has higher latency than other techniques. Wang
et al. [18] significantly reduced memory consumption
and computation on Zynq-7000 XC7Z045 through a low-
precision CNN model. However, to ensure high network
accuracy, the first and last layers had high precision, and
binary and ternary quantization were applied to the middle
layers. The experimental results showed a decrease of 2.6%
in accuracy compared to the baseline when all middle layers
were quantized as ternary in AlexNet, and a decrease of
0.7% was obtained compared to the baseline when all layers
were quantized as 8-bit. Lee et al. [52] used the stochastic
computing (SC) technique to effectively quantify CNN
because the quantization performance can vary greatly
depending on the dataset, training method, and network.
However, SC has the problem of high latency in CNN
accelerator design and poor high-precision quantization.
To solve the high latency caused by SC, this research
applied logarithmic quantization to reduce resource and
computational costs. Compared with linear quantization,
the latency of the operation was reduced through lower-
precision quantization, and the computational cost was
effectively reduced by addition instead of multiplication
MAC operations. Qiu et al. [53] observed variations in
the quantization range of weights and activations across
different layers. To address this issue, they analyzed the
distribution of each layer and determined the configurations
that minimized quantization errors. Specifically, they
allocated eight or four bits to different layers. Experimental
results on VGG16-SVD demonstrated that the proposed
approach achieved an accuracy similar to that of the
baseline, while providing an approximately 1.4× faster
processing speed than the CPU. Because each data format
has different advantages and disadvantages, a quantization
strategy should be selected considering the data format that
is most suitable for the specific environment. Sun et al. [54]
presented an efficient FPGA acceleration method for CNNs
with intra-layer and mixed-precision quantization. They
addressed the issue of irregular distribution of 8-bit filters
throughout the entire layer on FPGA due to mixed-precision
quantization, where bit operations are processed separately.
This technique divides the filters in each layer into several

Journal of Real-Time Image Processing (2024) 21:64 Page 11 of 21 64

weighted tiles, each containing a certain number of filters.
For each weight tile, the filter ordering is reorganized such
that the first tiled filters are preserved as 8-bit quantized
filters, and the remaining filters in the tile are quantized into
4-bit. This reduces the indexing overhead and improves
computation throughput. Through this method, a throughput
improvement of approximately 39% was achieved on Xilinx
Zynq-7000 XC7Z020.

4.3.2 Other compression methods

Pruning is a prominent CNN compression technique that
effectively reduces model size and computational workload
by removing redundant weights, particularly in accelerators.
However, because many of the weights become zero, it can
be even more effective in reducing computational cost in
conjunction with the zero-skipping technique [58]. The zero-
skipping technique skips computations when the data are
zero, thereby avoiding unnecessary operations. When used
alongside weight pruning, which sets many weights to zero,
this approach further optimizes computational efficiency.
Algorithms have also been designed to optimize CONV
operations, which account for the majority of computations
in CNNs. One notable example is the Winograd algorithm
[60], which is a mathematical technique used in CNNs to
optimize and enhance CONV operations, primarily by utiliz-
ing MM. This method aims to minimize multiplication and
memory requirements, thereby providing fast computation
and energy efficiency and plays a crucial role in achieving
high performance, particularly on FPGA and other hard-
ware accelerators. Most accelerator compression studies
apply a single compression technique. However, some stud-
ies have designed accelerators by integrating two compres-
sion techniques. Meng et al. [55] designed an accelerator
that exclusively utilizes on-chip memory without external
memory access, in contrast to conventional CNN accelera-
tors that access external memory to store the parameters. To
achieve optimization using only on-chip memory, a method
that combines quantization and structured sparsity was
proposed. First, the weights are divided into small groups.
Within each group, the smallest weights are set to zero, thus
sparsing that particular group. To achieve high element-
wise sparsity, the importance of the weights is evaluated
by considering the relative magnitudes of all the surviving
weights within the same layer. Based on the importance
scores assigned, weights are globally pruned, starting from
those with the smallest scores, thereby gradually increasing
sparsity. Next, quantization is applied to approximate the
weights using small integers. This approach simultaneously
performs structured pruning and quantization, leveraging the
advantages of both techniques. They, thus, achieved a sig-
nificantly more compressed accelerator design than previous

CNN accelerators, resulting in a 2.34× higher GOPS in Ima-
geNet classification.

5 Hardware architecture of CNN
accelerators on FPGA platforms

In this section, we introduce various architectures (i.e.,
fused-layer architecture, multi-PU architecture, systolic
array (SA) architecture, and CPU-FPGA collaborative
computing architecture) to enhance the efficiency of the
CNN accelerator. First, we introduce the fused-layer
architecture [63–66], which fuses and processes operations
of adjacent layers, and the multi-PU architecture [14,
67–69], which uses multiple processors to efficiently handle
operations of various shapes. After that, we elaborate on
the SA architecture [15–17, 70, 71], which uses a PE grid
in a pipeline manner, and the CPU-FPGA collaborative
computing architecture [72–75], which is designed to
efficiently handle tasks specialized for both CPU and FPGA.

5.1 Fused‑layer architecture

The design of existing CNN accelerators in FPGAs primar-
ily optimize and evaluate parallelism, reusing the data in
a single CONV layer [76]. However, this method requires
access to off-chip memory to store the intermediate data
between layers, resulting in high power consumption and
long latency. To solve this problem, the fused-layer method
performs operations by fusing adjacent layers. As shown in
Fig. 6, the fused-layer method can efficiently reduce DRAM
access by fusing connected Layer1 and Layer2 without pro-
cessing each CONV individually. The fused-layer method
is an approach that leverages the locality of convolution
operations. To achieve this, Layer1 is designed to compute
the outputs in the order required for the subsequent Layer2
operations, whereby Layer 1 performs operations on the
input feature map tiles. The intermediate feature map pro-
duced by Layer1 is not stored in off-chip memory. Instead, it
is directly utilized as the input feature map for Layer 2. Con-
sequently, the fused-layer method reduces DRAM access
by transmitting intermediate feature maps to the subsequent
layer without storage. It also optimizes memory utilization
by promptly discarding intermediate data after use in the
next layer. The fused-layer method minimizes overall data
transfer overhead, thereby contributing to a more stream-
lined and resource-efficient deep learning model. Alwani
et al. [63] proposed a method for manipulating on-chip data
inflow and a technique for fusing the processing of the sub-
sequent CONV layers using a pyramid-shaped multi-layer
sliding window. This fusion layer enables the on-chip cach-
ing of intermediate data, which can effectively reduce data
transfer from off-chip memory. The fused-layer design using

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 12 of 21

VGG-16 on the Xilinx Virtex-7 FPGA dramatically reduced
off-chip usage from 77 MB to just 3.6 MB. Erdem et al.
[64] optimally fused just two CONV layers. In other words,
unlike a full pyramid, which fuses until one output pixel is
generated, they used a tile-based truncated pyramid. This
method can achieve a more efficient trade-off in memory
usage by adjusting the tile size. Specifically, the tile-based
truncated pyramid design, employing only two fused layers
and VGG-16 on the Xilinx Zynq-7000 XC7Z020 FPGA,
enhanced the computation to communication ratio (CCR)
from 49.4% to 81.6%. As a result, unlike the full pyramid
approach, which requires storing massive amounts of inter-
mediate data in the on-chip memory, the tile-based truncated
pyramid design is efficient, even on FPGAs with only 4.9
Mb BRAM size. Indirli et al. [65] proposed a configurable
design of a fused-layer accelerator that can accelerate more
than two layers simultaneously. The proposed design uses
half-precision and output tiling to reduce memory usage.
Output tiling partitions the output feature map into square
tiles, enabling parallel computation of the divided tiles. This
method allows more data to be processed simultaneously.
Specifically, when using VGG-16 on the Xilinx XCZU15EG
FPGA, this method achieves 42× speedup and reduces trans-
fers from external memory by 95x compared to a single-layer
design. However, if the same optimization scheme is applied
to all layers, the different feature maps and parameter sizes
used in each layer of CNNs, present a limitation in efficient
acceleration as CNNs process operations of different shapes.
To overcome this limitation, Nguyen et al. [14] designed
different mixed-precision and layer-specific architectures for
each layer to reduce the DRAM access caused in transmit-
ting feature maps. They also proposed streaming CONV,
which allows the simultaneous computation of consecutive
CONVs. As a result, they reduced the model size by a factor
of 22.66× for YOLOv3 and 28.93 × for Tiny-YOLOv2. They
also achieved 1.88 tera operations per second (TOPS) on the

Xilinx Virtex-7 XC7VX485T. Wu et al. [66] proposed an
architecture that combines CONV and shortcut layers. This
architecture places a shortcut operation before the CONV
operation and utilizes the input features from the previous
layer stored in DRAM, which effectively reduces unnec-
essary DRAM accesses in the shortcut operation, thereby
achieving a bandwidth reduction of approximately 38.03%
on the Xilinx XCZU9EG.

5.2 Multi‑PU architecture

In conventional CNN accelerator approaches, a single PU is
used to serially process one CONV layer at a time. However,
single-PU accelerators using the same processing structure
cannot efficiently handle CNNs with various shapes (e.g.,
channel) and types (e.g., depth-wise CONV). Therefore,
recent approaches have used multiple processors to process
operations of various shapes. Figure 7 presents an exam-
ple calculation for eight CONV layers of different shapes.
The x- and y-axes represent time and PE utilization, respec-
tively. In Fig. 7a, the use of a single PU is optimized only
for specific CONVs, resulting in idle PEs and other CONV
operations. Meanwhile, in Fig. 7b, the use of two PUs ena-
bles the parallel processing of operations with different
shapes. Therefore, in terms of PE utilization and operation
time, it is more efficient than a single-processor structure.
Shen et al. [67] divided available hardware resources into
smaller processors to efficiently handle CONV layers with
different shapes. Such accelerator designs using multiple
processors can process adjacent CONV in a pipeline man-
ner, thus achieving high computational efficiency and 1.51×
throughput for AlexNet on Xilinx Virtex-7 XC7VX690T.
Wu et al. [68] proposed an accelerator targeting MobileNet,
consisting of various types of CONVs (e.g., depth-wise,
point-wise). They raised the issue of many PEs not being
utilized when calculating the depth-wise CONV layers in

Fig. 6 An example of a fused-
layer in two convolution layers
from [63]

Journal of Real-Time Image Processing (2024) 21:64 Page 13 of 21 64

a single-processor design. As a solution, they proposed the
MobileNet accelerator that uses separate processors specifi-
cally designed for standard and depth-wise CONV layers
instead of using a general CONV processor. Consequently,
the proposed method achieved speedups of 8.4× and 33.6×
over the CPU on Xilinx XCZU2EG and XCZU9EG, respec-
tively. Qararyah et al. [69] proposed a hybrid architecture,
whereby a single PE handles a single layer for the initial
layers that exhibit greater heterogeneity; whereas in the
remaining layers, a single PE handles multiple layers. As a
result, the proposed accelerator architecture achieved 1.7×
and 4.1× throughput improvements compared to the single
PE accelerator structures for the MobileNetv1 model on
Xilinx XCZU2EG and XCZU9EG, respectively. However,
this architecture has several limitations. First, as the opera-
tions vary between layers in the model, the required number
of PEs increases, causing significant resource consumption.
Second, a significant memory bandwidth is required to drive
multiple PEs simultaneously. Third, as the number of PEs
increases, the overhead of the control logic grows. There-
fore, in cases where the model consists of many layers that

perform similar CONV operations, designing one PE to pro-
cess multiple layers is efficient, as shown in Fig. 6a.

5.3 Systolic array architecture

The SA is a parallel-computing structure with multiple
deeply pipelined PEs [15]. Each PE processes input data
and forwards output data to the next PE. This structure has
advantages in parallel computation and is often used in CNN
accelerator implementations. Figure 8 shows the structure of
a 2D SA and a schematic of the single PE used to implement
a CNN accelerator. A 2D SA consists of multiple densely
pipelined PEs, each composed of a buffer and accumulator.
In each cycle, for one PE (x, y), the input data are passed to
PE (x + 1, y) and weight data are passed to PE (x, y + 1).
Moreover, each PE accumulates the product of the input
and weight data passed from the adjacent PE (OUTxy), and
output data move outside through the PE array. This SA
architecture can achieve high frequency by solving the tim-
ing issues encountered in massive parallelization through
local interconnects and data transfers shifted between PEs.
However, the mapping of a CNN model onto the SA is not

Fig. 7 An example of a network pipeline according to the processor for eight convolution layers from [68]. a Single convolution processor and b
multi-convolution processors

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 14 of 21

straightforward. Wei et al. [70] mapped a CNN model onto
the SA through the following three stages: (1) find a feasible
mapping; (2) select a PE array shape; and (3) determine the
data reuse strategy. In the first stage, they found a feasible
mapping for 3D CONV operations on 2D SA. In the second
stage, they selected the PE array shape that influences the
number of DSPs, clock frequency, and DSP utilization by
determining the size of each dimension. Finally, by select-
ing an appropriate tiling size that allowed extensive data
reuse, they found the SA configuration that yielded opti-
mum throughput and hardware utilization. Utilizing the SA
design, a comparable performance enhancement of 1.8×
GOPS was achieved on the same Intel Arria 10 GT 1150
FPGA, in contrast to a previous VGG accelerator [43] that
uses a comparable number of DSPs and LUTs. Chen et al.
[17] introduced a new data flow called row stationary (RS)
to minimize energy consumption due to data movement in
SA. The RS approach decomposes a 2D CONV into multiple
one-dimensional (1D) CONVs for processing. This maxi-
mizes the reuse of filters and feature maps, minimizing the
cost of accumulating partial sums. Unlike traditional data
flow methods, RS is flexible and can be adapted to a variety
of CNN architectures. RS maximizes energy efficiency by
fully utilizing the local storage of PE, direct communication
between PEs, and spatial parallelism. In the experiments
using the CNN configuration of AlexNet, the proposed
RS data flow showed 1.4–2.5× greater energy efficiency in
CONV operations and 1.3× greater efficiency in FC opera-
tions than conventional data flows. Zhang et al. [77] pro-
posed a 2D SA design to improve frequency. The authors
indicated that the critical path caused by the formation of
a long DSP chain within the PE of the existing accelera-
tor, is detrimental to the frequency. To solve this problem,
they designed the SA accelerator that divides the data path
of the DSP accumulation chain into multiple segments,
selecting the sum of one segmentation to output through

a multiplexer (MUX) in each cycle, thereby achieving a
1.29× higher frequency and 1,495 GOPS performance on
the Xilinx KCU1500 platform for the VGG16 network. The
specialized design of SA focusing on data reusability, can
achieve efficient data processing and minimize data move-
ment, resulting in high-throughput and energy-efficient
characteristics. However, a significant drawback of SA is
its poor hardware utilization performance in nonrepetitive
operations. To address this issue, Selvam et al. [71] proposed
a method called fully separable convolution (FuSeConv),
which transforms the less data-reusable depth-wise sepa-
rable CONV into a 1D CONV. FuSeConv decomposes the
traditional CONV filter (K ∗ K ∗ C) into two groups of 1D
filters (K ∗ 1 ∗ C∕D and 1 ∗ K ∗ C∕D), and partially sums
them, thereby enabling mapping onto a 2D SA structure.
Consequently, applying a depth-wise separable CONV to a
64 × 64 PE array, they achieved a 3 × to 7 × speedup on the
MobileNet family (MobileNetV1-3, MnasNet).

5.4 CPU‑FPGA collaborative computing architecture

The CPU-FPGA collaborative computing architecture
leverages the collaboration between a CPU and an FPGA
to provide high-performance computing. This architecture
offers higher power efficiency and throughput than a single
computing platform. The CPU is responsible for handling
software-oriented flexible algorithms with low parallelization,
executing general instruction-based tasks, whereas FPGA
accelerates specific tasks with high hardware parallelism.
When designing an accelerator, considering the roles of the
CPU and FPGA is essential in enabling efficient distribution of
computational tasks, to achieve high-performance computing
and flexible programming. Qiao et al. [72] proposed a
technique that accelerates CNNs by allocating specialized
computations to FPGA and CPU. They designed the MM
accelerator on FPGA to accelerate the CONV and FC layer

Fig. 8 Systolic array architecture

Journal of Real-Time Image Processing (2024) 21:64 Page 15 of 21 64

operations, with the remaining tasks performed on the CPU.
In addition, they addressed the latency caused by frequent data
copying, by employing a virtual memory approach to allow the
CPU and FPGA to operate in the same memory space using
DMA to transfer data to on-chip memory. Comparing their
approach to those implemented on general-purpose devices,
they achieved a performance improvement of 3.54× compared
to using the Intel Xeon X5675 CPU, and an energy efficiency
improvement of 4.7× compared to using the Nvidia K20
GPGPU. Wang et al. [73] proposed a design approach for the
YOLOv2 network, whereby non-performance-critical layers,
such as max-pooling and concatenation, are assigned to the
CPU, dedicating all FPGA hardware resources to accelerating
the CONV layers. They introduced interbatch layer-wise
pipelining, which enables the CPU and FPGA to concurrently
process operations from different layers when multiple input
images are present, achieving a throughput improvement of
1.17× compared with the model in which max-pooling was
implemented on Intel Arria 10 GX 1150 FPGA. Meloni et al.
[74] introduced a design approach to accelerate operations
such as CONV and pooling by implementing a convolution
engine (CE) in the PL of the FPGA. They efficiently handled
off-chip memory communication, specifically, the data
marshaling layer and fully connected layer operations, by
leveraging the SIMD vectorization capabilities of the ARM
Cortex-A9 NEON vector unit in the PS of the FPGA. This
approach enabled them to handle layers that cannot be easily
implemented in PL. Liu et al. [75] proposed a PS-PL co-design
structure, which comprises a PS that manages the model
parameters and configuration and a PL that handles layer
operations. The PS conveys the configuration and parameters
to the PL through the AXI high-performance (HP) and AI
general performance (GP) interfaces, respectively. On the PL
side, the transferred parameters are used to process compute-
intensive operations in the CONV, pooling, and FC layers
for acceleration. Notably, considering the massive FC layer
operation, they suggested a method for determining whether
to compute using PS or PL by identifying trade-offs to prevent
transmission overhead. Through this design technique,
inferences for various networks (e.g., AlexNet, VGG, and
MobileNet) could be made. In their implementation, they
achieved 206 GOPS for VGG network on Xilinx Zynq-7000
XC7Z045 FPGA.

6 Performance comparison

A hardware performance comparison of various CNN
accelerators is presented in Table 2. All accelerators
are organized based on the implemented CNN models,
documenting the data formats of the weights and activations
that constitute these models. GOPS was used as a unit to
measure throughput, which represents the computational

capacity of a CNN accelerator per second. The throughput
measurement, denoted as (conv), focuses specifically
on the CONV layers rather than the entire network. The
inference speed was based on FPS, which calculates the
number of images that can be processed per second. All
the resources (DSPs, LUTs, FFs, BRAMs) indicated HW
utilization within the implemented FPGA chip. Notably,
some studies such as those of Zhang et al. [44] and Song
et al. [48] have implemented the VGG model utilizing a
considerable amount of hardware resources, including DSP
and LUT, to achieve high throughput performance, whereas
Guo et al. [49] demonstrated the implementation of the same
model with significantly fewer resources. These approaches
highlight the efficiency and flexibility of utilizing hardware
resources and demonstrate the practical applicability of
accelerator designs. The performance difference (e.g.,
GOPS) between the studies of Zhang et al. [76] and Liu
et al. [79] clearly demonstrates the advantages of applying
quantization. Liu et al. [79] quantized weight and activation
to 8-bit and 16-bit fixed-point formats, respectively,
achieving 222.1 GOPS. In contrast, Zhang et al. [76] did
not apply quantization (floating point 32-bit), obtaining a
throughput of 61.6 GOPS, which indicates a decrease of
approximately 72% compared to [79]. Additionally, the
method of Zhang et al. [76] excelled by 152% in resource
efficiency (GOPS/Slice) compared to that of Liu et al.
[79]. Zhang et al. [76] applied various techniques such as
tiling, double buffering, and unrolling to minimize memory
access and computation costs but did not achieve high
throughput. Throughput can be improved by employing
quantization and PU design approaches, such as multi-PU
and SA configurations. Qiu et al. [53] and Liu et al. [75]
utilized the same fixed-point format to explore the impact
of bits allocated to the network ([53]: 16-bit, [75]: 8-bit) on
GOPS. Research [75] applying lower-precision quantization,
demonstrated an improvement of approximately 9% in
GOPS compared with [53]. The presence or absence of
quantization can significantly affect accelerator throughput,
and the allocation of bits can be a key factor in enhancing
throughput. However, it is important to note that low-
precision quantization may lead to a decrease in accuracy;
thus, in designing an accelerator the trade-off between
accuracy and throughput should be considered. Sun
et al. [54] demonstrated the advantages of versatility by
performing three different network inferences on a single
FPGA platform to explore the relationships between network
components. Additionally, to efficiently perform mixed-
precision computing, 4-bit and 8-bit data were reordered. If
8-bit operations can be supported by reusing 4-bit operators,
a higher throughput can be achieved.

Two studies by Nguyen et al. [13, 14] reduced DRAM
access with aggressive mixed precision and layer fusing
for all CONV operations, thereby demonstrating 32.5× and

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 16 of 21

Ta
bl

e
2

 P
er

fo
rm

an
ce

 a
nd

 re
so

ur
ce

 u
til

iz
at

io
n

of
 C

N
N

 a
cc

el
er

at
or

 d
es

ig
ns

Pr
ev

io
us

re

se
ar

ch
M

od
el

D
at

a
fo

rm
at

(w

/a
)

Fr
eq

ue
nc

y
(M

H
z)

Po
w

er
 (W

)
Th

ro
ug

hp
ut

(G

O
PS

)
Sp

ee
d

(F
PS

)
D

SP
s (

Th
e

nu
m

be
r o

f
us

ag
e)

LU
Ts

 (T
he

nu

m
be

r o
f

us
ag

e)

Fl
ip

Fl
op

s (
Th

e
nu

m
be

r o
f

us
ag

e)

B
R

A
M

 (M
b)

FP
G

A
 c

hi
p

[7
2]

A
le

xN
et

 [2
]

Fl
oa

t 3
2

15
0

14
.4

77
.8

–
83

6
(9

2.
8%

)
18

3,
19

0
(8

3.
8%

)2
1,

82
96

(4

9.
9%

)
14

.5
 (7

3.
8%

)
X

ili
nx

 Z
yn

q-
70

00
 X

C
7Z

04
5

[4
7]

A
le

xN
et

 [2
]

Fi
xe

d
16

30
3

–
13

82
.0

–
14

76
 (9

7.
2%

)
50

3,
80

8
(5

9.
0%

)1
00

,7
61

6
(5

9.
0%

)
49

.7
 (9

1.
6%

)
In

te
l A

rr
ia

 1
0

G
X

 1
15

0
[7

6]
A

le
xN

et
 [2

]
Fl

oa
t 3

2
10

0
18

.6
61

.6
 (c

on
v)

46
.3

 (c
on

v)
22

40
 (8

0.
0%

)
18

6,
25

1
(6

1.
4%

)2
05

,7
04

(3

3.
9%

)
20

 (5
3.

9%
)

X
ili

nx
 V

irt
ex

-7

X
C

7V
X

48
5T

[7
8]

A
le

xN
et

 [2
]

Fi
xe

d
8

30
0

17
.7

29
0.

4
(c

on
v)

9.
7

69
6

(4
0.

3%
)

10
1,

95
3

(4
4.

3%
)1

27
,5

77

(2
7.

7%
)

7.
1

(6
3.

6%
)

X
ili

nx
 Z

yn
q

U
ltr

as
ca

le
+

X

C
ZU

7E
V

[7
9]

A
le

xN
et

 [2
]

Fi
xe

d
8/

16
10

0
24

.8
22

2.
1

–
14

36
 (3

9.
9%

)
11

5,
03

6
(2

6.
6%

)1
74

,4
12

(2

0.
1%

)
21

.1
 (3

9.
7%

)
X

ili
nx

 V
irt

ex
-7

X

C
7V

X
69

0T
[3

7]
A

le
xN

et
 [2

]
Fi

xe
d

16
15

6
30

.2
56

5.
9

39
1

21
44

 (5
9.

6%
)

27
3,

80
5

(6
3.

2%
)2

62
,7

03

(3
0.

3%
)

34
.4

 (6
5.

1%
)

X
ili

nx
 V

irt
ex

-7

X
C

7V
X

69
0T

[6
7]

A
le

xN
et

 [2
]

Fl
oa

t 3
2

10
0

7.
6

85
.2

 (c
on

v)
64

.0
 (c

on
v)

24
43

 (8
7.

2%
)

17
6,

87
6

(5
8.

3%
)2

70
,9

91

(4
4.

6%
)

29
.2

 (3
9.

4%
)

X
ili

nx
 V

irt
ex

-7

X
C

7V
X

48
5T

A
le

xN
et

 [2
]

flo
at

 3
2

10
0

10
.2

11
3.

9
(c

on
v)

85
.6

 (c
on

v)
31

77
 (8

8.
3%

)
23

6,
87

7
(5

4.
7%

)3
48

,0
49

(4

0.
2%

)
25

.8
 (4

8.
8%

)
X

ili
nx

 V
irt

ex
-7

X

C
7V

X
69

0T
[7

0]
A

le
xN

et
 [2

]
Fl

oa
t 3

2
23

9.
6

–
36

0.
4

24
6.

9
12

90
 (8

5.
0%

)
70

0,
00

0
(8

2.
0%

)1
,4

00
,0

00

(8
1.

9%
)

47
.2

 (8
6.

0%
)

In
te

l A
rr

ia
 1

0
G

T
11

50
V

G
G

-1
6

[7
]

Fi
xe

d
8/

16
23

1.
85

–
11

71
.3

37
.2

15
00

 (9
8.

8%
)

62
6,

00
0

(7
3.

0%
)1

,2
52

,0
00

(7

3.
3%

)
40

.1
 (6

1.
0%

)
In

te
l A

rr
ia

 1
0

G
T

11
50

[5
3]

V
G

G
-1

6
[7

]
Fi

xe
d

16
15

0
9.

6
18

7.
8

(c
on

v)
4.

5
78

0
(8

9.
2%

)
18

2,
61

6
(8

3.
5%

)1
27

65
3

(2
9.

2%
)

17
.5

 (8
6.

7%
)

X
ili

nx
 Z

yn
q-

70
00

 X
C

7Z
04

5
[4

9]
V

G
G

-1
6

[7
]

Fi
xe

d
8

21
4

3.
5

84
.3

 (c
on

v)
2.

5
19

0
(8

6.
4%

)
29

,8
67

 (5
6.

1%
)3

5,
48

9
(3

3.
4%

)
3.

1
(6

1.
1%

)
X

ili
nx

 Z
yn

q-
70

00
 X

C
7Z

02
0

[3
9]

V
G

G
-1

6
[7

]
Fi

xe
d

32
20

0
8.

04
22

9.
2

(c
on

v)
7.

0
25

6
(1

00
.0

%
)

39
2,

74
0

(8
3.

7%
)7

85
,4

80

(8
3.

7%
)

8.
4

(1
6.

8%
)

In
te

l S
tra

tix
 V

5S

G
X

A
7

[8
0]

V
G

G
-1

6
[7

]
Fl

oa
t 3

2
20

0
28

.8
16

0.
0

–
16

00
 (6

3.
5%

)
14

1,
39

4
(5

1.
6%

)1
40

,5
06

(5

1.
6%

)
16

.2
 (5

0.
4%

)
X

ili
nx

 Z
yn

q
U

ltr
as

ca
le

+

X
C

ZU
9E

G
[4

4]
V

G
G

-1
6

[7
]

Fi
xe

d
16

15
0

26
35

4.
0

15
.3

28
33

 (7
8.

7%
)

34
6,

56
0

(7
9.

9%
)3

11
,9

04

(3
6.

0%
)

44
.9

 (8
4.

9%
)

X
ili

nx
 V

irt
ex

-7

X
C

7V
X

69
0T

[4
3]

V
G

G
-1

6
[7

]
Fi

xe
d

8/
16

15
0

–
64

5.
3

20
.8

15
18

 (1
00

.0
%

)
32

2,
00

0
(3

7.
7%

)
64

4,
00

0
(3

7.
7%

)
38

 (7
0.

0%
)

In
te

l A
rr

ia
 1

0
G

X
 1

15
0

[4
8]

V
G

G
-1

6
[7

]
Fi

xe
d

8
10

0
–

-
11

0.
6

40
96

 (5
9.

9%
)

92
2,

00
0

(7
8.

0%
)1

65
,0

00
 (7

.0
%

)
26

.2
 (7

2.
6%

)
X

ili
nx

 V
irt

ex

U
ltr

aS
ca

le
+

X

C
V

U
9P

Journal of Real-Time Image Processing (2024) 21:64 Page 17 of 21 64

Ta
bl

e
2

 (c
on

tin
ue

d)

Pr
ev

io
us

re

se
ar

ch
M

od
el

D
at

a
fo

rm
at

(w

/a
)

Fr
eq

ue
nc

y
(M

H
z)

Po
w

er
 (W

)
Th

ro
ug

hp
ut

(G

O
PS

)
Sp

ee
d

(F
PS

)
D

SP
s (

Th
e

nu
m

be
r o

f
us

ag
e)

LU
Ts

 (T
he

nu

m
be

r o
f

us
ag

e)

Fl
ip

Fl
op

s (
Th

e
nu

m
be

r o
f

us
ag

e)

B
R

A
M

 (M
b)

FP
G

A
 c

hi
p

[7
5]

V
G

G
-1

6
[7

]
Fi

xe
d

8
15

0
6.

2
20

6.
0

6.
8

78
7

(8
7.

4%
)

15
4,

00
0

(7
0.

5%
)1

28
,0

00

(2
9.

3%
)

18
.9

 (9
8.

5%
)

X
ili

nx
 Z

yn
q-

70
00

 X
C

7Z
04

5
M

ob
ile

N
et

V
1

[2
3]

fix
ed

 8
15

0
6.

2
13

.0
5.

5
78

7
(8

7.
4%

)
15

4,
00

0
(7

0.
5%

)1
28

00
0

(2
9.

3%
)

18
.9

 (9
8.

5%
)

X
ili

nx
 Z

yn
q-

70
00

 X
C

7Z
04

5
[5

5]
M

ob
ile

N
et

V
1

[2
3]

Fi
xe

d
4

13
3

30
.4

30
13

.0
26

48
.0

17
30

 (1
00

.0
%

)
2,

67
1,

80
0

(7
7.

1%
)

5,
34

3,
60

0
(7

7.
1%

)
27

.8
 (2

1.
0%

)
In

te
l S

tra
tix

 1
0

G
X

 1
0

M
[6

8]
M

ob
ile

N
et

V
1-

SS
D

 [8
1]

Fi
xe

d
8

43
0

–
-

31
.0

21
2

(8
8.

3%
)

31
,1

98
 (6

6.
1%

)4
6,

80
9

(4
9.

6%
)

5.
1

(9
6.

7%
)

X
ili

nx
 Z

yn
q

U
ltr

as
ca

le
+

X

C
ZU

2E
G

M
ob

ile
N

et
V

1-
SS

D
 [8

1]
Fi

xe
d

8
33

3
–

-
12

4.
3

20
70

 (8
2.

1%
)

16
1,

94
4

(5
9.

1%
)3

01
,4

16

(5
5.

0%
)

27
.1

 (8
4.

5%
)

X
ili

nx
 Z

yn
q

U
ltr

as
ca

le
 +

X

C
ZU

9E
G

M
ob

ile
N

et
V

2
[2

4]
Fi

xe
d

8
43

0
–

-
20

5.
3

21
2

(8
8.

3%
)

31
,1

98
 (6

6.
1%

)4
6,

80
9

(4
9.

6%
)

5.
1

(9
6.

7%
)

X
ili

nx
 Z

yn
q

U
ltr

as
ca

le
+

X

C
ZU

2E
G

M
ob

ile
N

et
V

2
[2

4]
Fi

xe
d

8
33

3
–

-
80

9.
8

20
70

 (8
2.

1%
)

16
1,

94
4

(5
9.

1%
)3

01
,4

16

(5
5.

0%
)

27
.1

 (8
4.

5%
)

X
ili

nx
 Z

yn
q

U
ltr

as
ca

le
 +

X

C
ZU

9E
G

[8
2]

M
ob

ile
N

et
V

2
[2

4]
Fi

xe
d1

6
15

0
3.

11
10

.9
17

20
6

(9
3.

6%
)

41
,6

22
 (7

8.
2%

)4
7,

33
1

(4
4.

5%
)

4.
5

(9
1.

4%
)

X
ili

nx
 Z

yn
q-

70
00

 X
C

7Z
02

0
[5

4]
M

ob
ile

N
et

V
2

[2
4]

M
ix

ed

pr
ec

is
io

n
10

0
3.

0
29

.3
49

.2
21

4
(9

7.
0%

)
39

,1
00

 (7
4.

0%
)–

4.
4

(9
0.

0%
)

X
ili

nx
 Z

yn
q-

70
00

 X
C

7Z
02

0
Re

sN
et

-1
8

[1
]

M
ix

ed

pr
ec

is
io

n
10

0
3.

0
46

.8
12

.9
21

4
(9

7.
0%

)
39

,1
00

 (7
4.

0%
)–

4.
4

(9
0.

0%
)

X
ili

nx
 Z

yn
q-

70
00

 X
C

7Z
02

0
Re

sN
et

-5
0

[1
]

M
ix

ed

pr
ec

is
io

n
10

0
3.

0
63

.6
7.

8
21

4
(9

7.
0%

)
39

,1
00

 (7
4.

0%
)–

4.
4

(9
0.

0%
)

X
ili

nx
 Z

yn
q-

70
00

 X
C

7Z
02

0
[6

7]
Sq

ue
ez

eN
et

[2

5]
Fi

xe
d

16
17

0
7.

2
90

9.
7

(c
on

v)
11

73
.0

 (c
on

v)
28

80
 (8

0.
0%

)
64

3,
90

8
(9

2.
9%

)–
22

.9
 (4

3.
2%

)
X

ili
nx

 V
irt

ex
-7

X

C
7V

X
69

0T
[3

5]
C

lo
ud

Sc
ou

t
[8

3]
Fi

xe
d

16
11

5.
4

4.
5

–
6.

9
11

58
 (6

7.
0%

)
59

,1
95

 (2
5.

7%
)2

0,
77

1
(4

.5
%

)
1.

4
(1

2.
5%

)
X

ili
nx

 Z
yn

q
U

ltr
as

ca
le

 +

X
C

ZU
7E

V
[4

0]
V

D
SR

 [2
6]

Fi
xe

d
4/

8
20

0
–

-
–

26
5

(7
3.

6%
)

69
,3

16
 (9

8.
2%

)4
91

2
(3

.5
%

)
4.

78
 (6

1.
1%

)
X

ili
nx

 Z
yn

q
U

ltr
aS

ca
le

 +

X
C

ZU
3E

G
[6

6]
Y

O
LO

-li
ke

Fi
xe

d
8

10
0

–
14

.3
–

27
7

(1
1.

0%
)

65
,7

80
 (2

4.
0%

)–
5.

7
(1

7.
6%

)
X

ili
nx

 Z
yn

q
U

ltr
as

ca
le

+

X
C

ZU
9E

G
[1

3]
tin

y
Y

O
LO

v2
M

ix
ed

pr

ec
is

io
n

20
0

8.
7

46
4.

7
66

.6
10

26
 (3

6.
6%

)
86

,0
00

 (2
8.

3%
)6

0,
00

0
(9

.9
%

)
18

.5
 (4

9.
8%

)
X

ili
nx

 V
irt

ex
-7

X

C
7V

X
48

5T

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 18 of 21

131.3× higher throughput than the YOLO accelerator of Wu
et al. [66]. Meng et al. [55] proposed an accelerator that
exclusively leverages on-chip memory, eliminating DRAM
access by applying high element-wise sparsity and low-pre-
cision quantization. Although this approach may introduce
some loss in accuracy compared to other accelerators, it
significantly reduces latency and achieves high throughput.
Pacini et al. [35] significantly reduced the usage of filter
and feature map buffers through a hierarchical cache system,
implementing an accelerator with only 1.4 Mb of memory
usage. Although the hierarchical cache system significantly
reduces memory usage, power consumption is greater com-
pared to other accelerators because of the extensive use of
LUTs and registers. Sun et al. [54] significantly reduced
resource utilization and power consumption by integrating
a mixed-precision quantization technique. Zhang et al. [44]
despite utilizing memory optimization techniques such as
tiling, were unable to prevent frequent off-chip memory
access and a significant BRAM consumption of 44.9 Mb.
To address these issues, we believe that employing a hier-
archical memory structure or fused-layer techniques can
substantially reduce off-chip memory access and enhance
BRAM utilization. Wei et al. [70] implemented AlexNet
and VGG through an SA design, achieving high frequency
and high throughput. Compared with the CONV inference
of AlexNet designed by Zhang et al. [76], they achieved
2.4× higher operating frequency and 5.9× higher throughput.
Compared with the VGG designed by Ma et al. [43], with
the same bit precision [70], obtained 1.8× superior GOPS.
Nevertheless, notable limitations are the high computational
load and significantly increased hardware resource consump-
tion, with an average of 3.38× and 1.45× compared to [43,
76], respectively. Liu et al. [75] proposed a flexible inference
of VGG and MobileNet using the same hardware implemen-
tation by effectively coordinating the PS. Meanwhile, Wu
et al. [68] demonstrated the advantages of reusability by
implementing various forms of MobileNet inference using
a MobileNet-dedicated accelerator with a multi-PU design.
These studies accelerate computations significantly, achiev-
ing performance gains of 147.2× and 16.5× , respectively,
compared to [54, 75]. They also achieved significant reduc-
tions in hardware usage, including over threefold decrease
in DSP and BRAM utilization and more than a five-fold
reduction in LUTs, while exhibiting a remarkable 37.3×
increase in FPS when implemented on the ZU2EG platform,
surpassing the performance demonstrated by Liu et al. [75].
Thus, depending on the specific CNN and FPGA resource
specifications, various network compression and optimiza-
tion techniques can be applied for computation and memory.
In conclusion, by selecting the appropriate PE and data flow
that match the characteristics of CNNs, the desired CNN
accelerator can be designed.

Ta
bl

e
2

 (c
on

tin
ue

d)

Pr
ev

io
us

re

se
ar

ch
M

od
el

D
at

a
fo

rm
at

(w

/a
)

Fr
eq

ue
nc

y
(M

H
z)

Po
w

er
 (W

)
Th

ro
ug

hp
ut

(G

O
PS

)
Sp

ee
d

(F
PS

)
D

SP
s (

Th
e

nu
m

be
r o

f
us

ag
e)

LU
Ts

 (T
he

nu

m
be

r o
f

us
ag

e)

Fl
ip

Fl
op

s (
Th

e
nu

m
be

r o
f

us
ag

e)

B
R

A
M

 (M
b)

FP
G

A
 c

hi
p

[1
4]

si
m

 Y
O

LO
v2

M
ix

ed

pr
ec

is
io

n
20

0
–

18
77

.0
10

9.
3

82
9

(2
9.

6%
)

24
5,

30
0

(8
0.

8%
)–

22
.4

 (6
0.

4%
)

X
ili

nx
 V

irt
ex

-7

X
C

7V
X

48
5T

Journal of Real-Time Image Processing (2024) 21:64 Page 19 of 21 64

7 Conclusion

This paper investigates and analyzes previous
studies with regard to architecture and optimization
techniques of FPGA-based CNN accelerators. By
employing optimization techniques such as parallel
computing, memory access optimization, and reduction
of computational workload, the overall processing
speed can be improved, thereby minimizing the
computational cost and maximizing the performance
of the accelerator. Furthermore, through the design of
accelerator architectures, data flow, memory structure,
and computational types can be optimized, to reduce
computational workload and enhance parallel processing.

The current research accomplishments on FPGA-based
CNN accelerators have been instrumental in facilitating the
commercial deployment of CNN inference, characterized
by low power consumption and high throughput within
embedded devices. However, CNN accelerators, with
inherent features for dedicated network optimization,
exhibit notably reduced compatibility compared to GPUs.
Therefore, it is imperative that future research be steered
toward the development of versatile accelerators capable
of operating a variety of CNNs within a singular FPGA
platform, and trainable accelerators that encompass
back-propagation operations. In addition, it has become
increasingly important to advance vision transformer
(ViT) accelerator research, particularly for optimizing
operations to facilitate multi-head self-attention (MSA)
and FC in ViT.

Acknowledgements This research was partly supported by the
MSIT (Ministry of Science and ICT), Korea, under the ITRC
(Information Technology Research Center) support program (IITP-
2023-RS-2022-00156295) supervised by the IITP (Institute for Infor-
mation & Communications Technology Planning & Evaluation) and
the National R &D Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science and ICT
(NRF-2022M3I7A1078936).

Authors' contributions In the research project, Hyeonseok Hong
and Dahun Choi equally contributed to conceptualization, drafting,
data curation, analysis, visualization, and validation. Namjoon Kim,
Haein Lee, Beomjin Kang, and Huibeom Kang were involved in data
curation and draft preparation, with Kim and Lee also contributing to
visualization. Hyun Kim oversaw the project, managed administration,
secured funding, provided resources, and reviewed and edited the
manuscript.

Data availability Data availability is not applicable to this article as no
new data were created or analysed in this study.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 770–778 (2016)

 2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-
tion with deep convolutional neural networks. Commun. ACM
60(6), 84–90 (2017)

 3. Choi, J., Chun, D., Kim, H., Lee, H.-J.: Gaussian yolov3: an
accurate and fast object detector using localization uncertainty
for autonomous driving. In: Proceedings of the IEEE International
Conference on Computer Vision, pp. 502–511 (2019)

 4. Redmon, J., Farhadi, A.: Yolov3: An Incremental Improvement.
arXiv preprint arXiv: 1804. 02767 (2018)

 5. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: Yolact: real-time instance
segmentation. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 9157–9166 (2019)

 6. Lee, S.I., Kim, H.: Gaussianmask: uncertainty-aware instance
segmentation based on Gaussian modeling. In: Proceedings of
the 26th International Conference on Pattern Recognition (ICPR
2022) (2022)

 7. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks
for Large-Scale Image Recognition. arXiv preprint arXiv: 1409.
1556 (2014)

 8. Kim, N.J., Kim, H.: FP-AGL: filter pruning with adaptive gradi-
ent learning for accelerating deep convolutional neural networks.
IEEE Trans Multimed. 25, 5279–5290 (2023)

 9. Chun, D., Choi, J., Lee, H.-J., Kim, H.: CP-CNN: computational
parallelization of CNN-based object detectors in heterogeneous
embedded systems for autonomous driving. IEEE Access 11,
52812–52823 (2023)

 10. Guo, K., Zeng, S., Yu, J., Wang, Y., Yang, H.: A Survey of FPGA-
Based Neural Network Inference Accelerator. arXiv preprint
arXiv: 1712. 08934 (2018)

 11. Choquette, J., Gandhi, W., Giroux, O., Stam, N., Krashinsky, R.:
Nvidia a100 tensor core GPU: performance and innovation. IEEE
Micro 41(2), 29–35 (2021). https:// doi. org/ 10. 1109/ MM. 2021.
30613 94

 12. Kim, H.: Review of optimal convolutional neural network accel-
erator platforms for mobile devices. J. Comput. Sci. Eng. 16(2),
113–119 (2022)

 13. Nguyen, D.T., Nguyen, T.N., Kim, H., Lee, H.-J.: A high-through-
put and power-efficient FPGA implementation of YOLO CNN for
object detection. IEEE Trans. Very Large Scale Integr. Syst. 27(8)
(2019) 1861–1873

 14. Nguyen, D.T., Kim, H., Lee, H.-J.: Layer-specific optimization for
mixed data flow with mixed precision in FPGA design for CNN-
based object detectors. IEEE Trans. Circuits Syst. Video Technol.
31(6), 2450–2464 (2021)

 15. Rahman, A., Lee, J., Choi, K., Efficient FPGA acceleration of
convolutional neural networks using logical-3d compute array.
In: 2016 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1393–1398. IEEE (2016)

 16. Ma, Y., Suda, N., Cao, Y., Seo, J.-S., Vrudhula, S., Scalable and
modularized RTL compilation of convolutional neural networks
onto FPGA. In: 2016 26th International Conference on Field Pro-
grammable Logic and Applications (FPL), pp. 1–8. IEEE (2016)

 17. Chen, Y.-H., Emer, J., Sze, V.: Eyeriss: a spatial architecture for
energy-efficient dataflow for convolutional neural networks. ACM
SIGARCH Comput. Archit. News 44(3), 367–379 (2016)

 18. Wang, J., Lou, Q., Zhang, X., Zhu, C., Lin, Y., Chen, D., Design
flow of accelerating hybrid extremely low bit-width neural net-
work in embedded FPGA. In: 2018 28th international conference
on field programmable logic and applications (FPL), pp. 163–
1636. IEEE (2018)

http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1712.08934
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1109/MM.2021.3061394

 Journal of Real-Time Image Processing (2024) 21:64 64 Page 20 of 21

 19. Ki, S., Park, J., Kim, H.: Dedicated FPGA implementation of the
Gaussian TinyYOLOv3 accelerator. IEEE Trans. Circuits Syst. II
Express Briefs 70(10), 3882–3886 (2023)

 20. Mittal, S.: A survey of FPGA-based accelerators for convolutional
neural networks. Neural Comput. Appl. 32(4), 1109–1139 (2020)

 21. Kuon, I., Tessier, R., Rose, J.: FPGA architecture: survey and chal-
lenges. Found. Trends Electron. Des. Autom. 2(2), 135–253 (2008)

 22. Jang, J.-H., Shin, J., Park, J.-T., Hwang, I.-S., Kim, H.: In-depth
survey of processing-in-memory architectures for deep neural
networks. J. Semicond. Technol. Sci. 23(5), 322–339 (2023)

 23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., Andreetto, M., Adam, H.: Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. arXiv
preprint arXiv: 1704. 04861 (2017)

 24. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:
Mobilenetv2: inverted residuals and linear bottlenecks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520 (2018)

 25. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J.,
Keutzer, K.: Squeezenet: Alexnet-Level Accuracy with 50x Fewer
Parameters and < 0.5 mb Model Size. arXiv preprint arXiv: 1602.
07360 (2016)

 26. Kim, J., Lee, J.K., Lee,, K.M.: Accurate image super-resolution
using very deep convolutional networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1646–1654 (2016)

 27. Park, J., Bin, K., Lee, K.: mGEMM: low-latency convolution with
minimal memory overhead optimized for mobile devices. In: Pro-
ceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, pp. 222–234 (2022)

 28. Papaphilippou, P., Luk, W.: Accelerating database systems using
FPGAs: a survey. In: 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), pp. 125–1255.
IEEE (2018)

 29. Xilinx, Getting started with Alveo data center accelerator cards,
bit. ly/ 48gwX iT, pDF document (2022)

 30. Intel, Intel acceleration stack quick start guide for intel program-
mable acceleration card with Intel Arria 10 gx FPGA, bit. ly/
48gwX iT, PDF document (2018)

 31. Seng, K.P., Lee, P.J., Ang, L.M.: Embedded intelligence on FPGA:
survey, applications and challenges. Electronics 10(8), 895 (2021)

 32. Shawahna, A., Sait, S.M., El-Maleh, A.: FPGA-based accelerators
of deep learning networks for learning and classification: a review.
IEEE Access 7, 7823–7859 (2018)

 33. Jinghong, D., Yaling, D., Kun, L.: Development of image process-
ing system based on DSP and FPGA. In: 2007 8th International
Conference on Electronic Measurement and Instruments, pp.
2–791. IEEE (2007)

 34. Ryu, S., Oh, Y., Kim, J.-J., Mobileware: a high-performance
mobilenet accelerator with channel stationary dataflow. In: 2021
IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–9. IEEE (2021)

 35. Pacini, T., Rapuano, E., Dinelli, G., Fanucci, L.: A multi-cache
system for on-chip memory optimization in FPGA-based CNN
accelerators. Electronics 10(20), 2514 (2021)

 36. Motamedi, M., Gysel, P., Akella, V., Ghiasi, S., Design space
exploration of FPGA-based deep convolutional neural networks.
In: 2016 21st Asia and South Pacific Design Automation Confer-
ence (ASP-DAC), pp. 575–580. IEEE (2016)

 37. Li, H., Fan, X., Jiao, L., Cao, W., Zhou, X., Wang, L.: A high
performance FPGA-based accelerator for large-scale convolu-
tional neural networks. In: 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), pp. 1–9.
IEEE (2016)

 38. Jia, X., Zhang, Y., Liu, G., Yang, X., Zhang, T., Zheng, J., Xu,
D., Wang, H., Zheng, R., Pareek, S., et al.: XVDPU: a high

performance CNN accelerator on the versal platform powered by
the AI engine. In: 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL), pp. 01–09. IEEE
(2022)

 39. Podili, A., Zhang, C., Prasanna, V., Fast and efficient implementa-
tion of convolutional neural networks on FPGA. In: 2017 IEEE
28th International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), pp. 11–18. IEEE (2017)

 40. Li, G., Liu, Z., Li, F., Cheng, J.: Block convolution: toward mem-
ory-efficient inference of large-scale CNNs on FPGA. IEEE Trans.
Comput.-Aid. Des. Integr. Circuits Syst. 41(5), 1436–1447 (2021)

 41. Bai, L., Zhao, Y., Huang, X.: A CNN accelerator on FPGA using
depthwise separable convolution. IEEE Trans. Circuits Syst. II
Express Briefs 65(10), 1415–1419 (2018)

 42. Fan, H., Ferianc, M., Que, Z., Li, H., Liu, S., Niu, X., Luk, W.:
Algorithm and hardware co-design for reconfigurable CNN accel-
erator. In: 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 250–255. IEEE (2022)

 43. Ma, Y., Cao, Y., Vrudhula, S., Seo, J.-s.: Optimizing loop opera-
tion and dataflow in FPGA acceleration of deep convolutional
neural networks. In: Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, pp.
45–54 (2017)

 44. Zhang, C., Sun, G., Fang, Z., Zhou, P., Pan, P., Cong, J.: Caffeine:
toward uniformed representation and acceleration for deep convo-
lutional neural networks. IEEE Trans. Comput.-Aid. Des. Integr.
Circuits Syst. 38(11), 2072–2085 (2018)

 45. Basalama, S., Sohrabizadeh, A., Wang, J., Guo, L., Cong, J.:
FlexCNN: an end-to-end framework for composing CNN accel-
erators on FPGA. ACM Trans. Reconfig. Technol. Syst. 16(2),
1–32 (2023)

 46. Gao, M., Yang, X., Pu, J., Horowitz, M., Kozyrakis, C., Tangram:
optimized coarse-grained dataflow for scalable NN accelerators.
In: Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems, pp. 807–820 (2019)

 47. Aydonat, U., O’Connell, S., Capalija, D., Ling, A.C., Chiu, G.R.:
An openclTM deep learning accelerator on Arria 10. In: Proceed-
ings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 55–64 (2017)

 48. Song, Y., Wu, B., Yuan, T., Liu, W.: A high-speed CNN hardware
accelerator with regular pruning. In: 2022 23rd International Sympo-
sium on Quality Electronic Design (ISQED), pp. 1–5. IEEE (2022)

 49. Guo, K., Sui, L., Qiu, J., Yu, J., Wang, J., Yao, S., Han, S., Wang,
Y., Yang, H.: Angel-eye: a complete design flow for mapping
CNN onto embedded FPGA. IEEE Trans. Comput.-Aid. Des.
Integr. Circuits Syst. 37(1), 35–47 (2017)

 50. Park, J., Sung, W.: FPGA based implementation of deep neural
networks using on-chip memory only. In: 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1011–1015. IEEE (2016)

 51. Vogel, S., Liang, M., Guntoro, A., Stechele, W., Ascheid, G.:
Efficient hardware acceleration of CNNs using logarithmic data
representation with arbitrary log-base. In: 2018 IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), pp.
1–8. ACM (2018)

 52. Lee, S., Sim, H., Choi, J., Lee, J.: Successive log quantization
for cost-efficient neural networks using stochastic computing. In:
Proceedings of the 56th Annual Design Automation Conference
2019, pp. 1–6 (2019)

 53. Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., Yu, J., Tang,
T., Xu, N., Song, S. et al.: Going deeper with embedded FPGA
platform for convolutional neural network. In: Proceedings of the
2016 ACM/SIGDA International Symposium on Field-Program-
mable Gate Arrays, pp. 26–35 (2016)

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1602.07360
http://arxiv.org/abs/1602.07360
http://bit.ly/48gwXiT
http://bit.ly/48gwXiT
http://bit.ly/48gwXiT

Journal of Real-Time Image Processing (2024) 21:64 Page 21 of 21 64

 54. Sun, M., Li, Z., Lu, A., Li, Y., Chang, S.-E., Ma, X., Lin, X.,
Fang, Z.: FILM-QNN: Efficient FPGA acceleration of deep neu-
ral networks with intra-layer, mixed-precision quantization. In:
Proceedings of the 2022 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, pp. 134–145 (2022)

 55. Meng, J., Venkataramanaiah, S.K., Zhou, C., Hansen, P., What-
mough, P., Seo, J.-s.: FIXYFPGA: Efficient fpga accelerator for
deep neural networks with high element-wise sparsity and without
external memory access. In: 2021 31st International Conference
on Field-Programmable Logic and Applications (FPL), pp. 9–16.
IEEE (2021)

 56. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M.A.,
Dally, W.J.: EIE: efficient inference engine on compressed deep
neural network. ACM SIGARCH Comput. Archit. News 44(3),
243–254 (2016)

 57. Pellauer, M., Shao, Y.S., Clemons, J., Crago, N., Hegde, K., Venkate-
san, R., Keckler, S.W., Fletcher, C.W., Emer, J.: Buffets: an efficient
and composable storage idiom for explicit decoupled data orchestra-
tion. In: Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pp. 137–151 (2019)

 58. Liu, M., Zhou, C., Qiu, S., He, Y., Jiao, H.: CNN accelerator at the
edge with adaptive zero skipping and sparsity-driven data flow. IEEE
Trans. Circuits Syst. Video Technol. 33(12), 7084–7095 (2023)

 59. Kim, N.J., Kim, H.: Trunk pruning: highly compatible channel
pruning for convolutional neural networks without fine-tuning.
IEEE Trans. Multimed. 26, 5588–5599 (2023)

 60. Wang, H., Lu, J., Lin, J., Wang, Z.: An FPGA-based reconfigurable
CNN training accelerator using decomposable Winograd. In: 2023
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp.
1–6 (2023). https:// doi. org/ 10. 1109/ ISVLS I59464. 2023. 10238 574

 61. Kim, S., Kim, H.: Zero-centered fixed-point quantization with
iterative retraining for deep convolutional neural network-based
object detectors. IEEE Access 9, 20828–20839 (2021)

 62. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W, Keutzer,
K.: A Survey of Quantization Methods for Efficient Neural Net-
work Inference, arXiv preprint arXiv: 2103. 13630 (2021)

 63. Alwani, M., Chen, H., Ferdman, M., Milder, P.: Fused-layer CNN
accelerators. In: 2016 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pp. 1–12. IEEE (2016)

 64. Erdem, A., Babic, D., Silvano, C.: A tile-based fused-layer
approach to accelerate DCNNs on low-density FPGAs. In: 2019
26th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pp. 37–40. IEEE(2019)

 65. Indirli, F., Erdem, A., Silvano, C.: A tile-based fused-layer CNN
accelerator for FPGAs. In: 2020 27th IEEE International Conference
on Electronics, Circuits and Systems (ICECS), pp. 1–4. IEEE (2020)

 66. Wu, C.-B., Wu, R.-F., Chan, T.-W.: Hetero layer fusion based
architecture design and implementation for of deep learning
accelerator. In: 2022 IEEE International Conference on Consumer
Electronics-Taiwan, pp. 63–64. IEEE (2022)

 67. Shen, Y., Ferdman, M., Milder, P.: Maximizing CNN accelerator
efficiency through resource partitioning. ACM SIGARCH Com-
put. Archit. News 45(2), 535–547 (2017)

 68. Wu, D., Zhang, Y., Jia, X., Tian, L., Li, T., Sui, L., Xie, D., Shan, Y.:
A high-performance CNN processor based on FPGA for mobilenets.
In: 2019 29th International Conference on Field Programmable Logic
and Applications (FPL), pp. 136–143. IEEE (2019)

 69. Qararyah, F., Azhar, M.W., Trancoso, P., Fibha: fixed budget
hybrid CNN accelerator. In: 2022 IEEE 34th International Sym-
posium on Computer Architecture and High Performance Com-
puting (SBAC-PAD), pp. 180–190. IEEE (2022)

 70. Wei, X., Yu, C.H., Zhang, P., Chen, Y., Wang, Y., Hu, H., Liang,
Y., Cong, J.: Automated systolic array architecture synthesis for
high throughput CNN inference on FPGAs. In: Proceedings of the
54th Annual Design Automation Conference 2017, pp. 1–6 (2017)

 71. Selvam, S., Ganesan, V., Kumar, P., FuSeConv: fully separable
convolutions for fast inference on systolic arrays. In: 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE),
pp. 651–656. IEEE (2021)

 72. Qiao, Y., Shen, J., Xiao, T., Yang, Q., Wen, M., Zhang, C.: FPGA-
accelerated deep convolutional neural networks for high through-
put and energy efficiency. Concurr. Comput. Pract. Exp. 29(20),
e3850 (2017)

 73. Wang, Z., Xu, K., Wu, S., Liu, L., Liu, L., Wang, D.: Sparse-
YOLO: hardware/software co-design of an FPGA accelerator for
YOLOv2. IEEE Access 8, 116569–116585 (2020)

 74. Meloni, P., Capotondi, A., Deriu, G., Brian, M., Conti, F., Rossi,
D., Raffo, L., Benini, L.: Neuraghe: Exploiting CPU-FPGA syn-
ergies for efficient and flexible CNN inference acceleration on
ZYNQ SOCs. ACM Trans. Reconfig. Technol. Syst (TRETS)
11(3), 1–24 (2018)

 75. Liu, W., Li, Y., Yang, Y., Zhu, J., Liu, L., Design an efficient
DNN inference framework with PS-PL synergies in FPGA for
edge computing. In: 2022 China Automation Congress (CAC),
pp. 4186–4190. IEEE (2022)

 76. Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J.: Optimiz-
ing FPGA-based accelerator design for deep convolutional neural
networks. In: Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pp. 161–170 (2015)

 77. Zhang, J., Zhang, W., Luo, G., Wei, X., Liang, Y., Cong, J.: Fre-
quency improvement of systolic array-based CNNs on FPGAS.
In: 2019 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 1–4. IEEE (2019)

 78. Zhang, M., Li, L., Wang, H., Liu, Y., Qin, H., Zhao, W.: Opti-
mized compression for implementing convolutional neural net-
works on FPGA. Electronics 8(3), 295 (2019)

 79. Liu, Z., Dou, Y., Jiang, J., Xu, J., Automatic code generation of
convolutional neural networks in FPGA implementation, In: 2016
International Conference on Field-Programmable Technology
(FPT), pp. 61–68. IEEE (2016)

 80. Li, X., Cai, Y., Han, J., Zeng, X., A high utilization FPGA-based
accelerator for variable-scale convolutional neural network. In:
2017 IEEE 12th International Conference on ASIC (ASICON),
pp. 944–947. IEEE (2017)

 81. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y.,
Berg, A.C.: SSD: single shot multibox detector. In: Computer
Vision–ECCV 2016: 14th European Conference. Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp.
21–37. Springer, Berlin (2016)

 82. Sang, X., Ruan, T., Li, C., Li, H., Yang, R., Liu, Z.: A real-time
and high-performance mobilenet accelerator based on adaptive
dataflow scheduling for image classification. J. Real-Time Image
Process. 21(1), 4 (2024)

 83. Giuffrida, G., Diana, L., de Gioia, F., Benelli, G., Meoni, G.,
Donati, M., Fanucci, L.: Cloudscout: a deep neural network for
on-board cloud detection on hyperspectral images. Remote Sens.
12(14), 2205 (2020)

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/ISVLSI59464.2023.10238574
http://arxiv.org/abs/2103.13630

	Survey of convolutional neural network accelerators on field-programmable gate array platforms: architectures and optimization techniques
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Convolution neural network
	2.1.1 Convolution operation
	2.1.2 Conventional general matrix multiply architecture

	2.2 Field-programmable gate array
	2.2.1 Processing system
	2.2.2 Arithmetic units
	2.2.3 On-chip memory
	2.2.4 Off-chip memory

	3 Brief overview of CNN accelerator design
	4 Optimization techniques of CNN accelerators for FPGA implementation
	4.1 Computational optimization
	4.1.1 Unrolling
	4.1.2 Batching

	4.2 Memory optimization
	4.2.1 Double buffering
	4.2.2 Tiling
	4.2.3 Distributed BRAM
	4.2.4 Memory hierarchy Utilization

	4.3 Compression
	4.3.1 Quantization
	4.3.2 Other compression methods

	5 Hardware architecture of CNN accelerators on FPGA platforms
	5.1 Fused-layer architecture
	5.2 Multi-PU architecture
	5.3 Systolic array architecture
	5.4 CPU-FPGA collaborative computing architecture

	6 Performance comparison
	7 Conclusion
	Acknowledgements
	References

