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Abstract
With the recent advancements in high-performance computing, convolutional neural networks (CNNs) have achieved remark-
able success in various vision tasks. However, along with improvements in model accuracy, the size and computational com-
plexity of the models have significantly increased with the increasing number of parameters. Although graphics processing 
unit (GPU) platforms equipped with high-performance memory and specialized in parallel processing are commonly used 
for CNN processing, the significant power consumption presents challenges in their utilization on edge devices. To address 
these issues, research is underway to design CNN models using field-programmable gate arrays (FPGAs) as accelerators. 
FPGAs provide a high level of flexibility, allowing efficient optimization of convolution operations, which account for a 
significant portion of the CNN computations. Additionally, FPGAs are known for their low power consumption compared to 
GPUs, making them a promising energy-efficient platform. In this paper, we review and summarize various approaches and 
techniques related to the design of FPGA-based CNN accelerators. Specifically, to comprehensively study CNN accelera-
tors, we investigate the advantages and disadvantages of various methods for optimizing CNN accelerators and previously 
designed efficient accelerator architectures. We expect this paper to serve as an important guideline for future hardware 
research in artificial intelligence.

Keywords Convolutional neural network · Accelerator · Field-programmable gate array (FPGA) · Design optimization · 
Data flow

1 Introduction

In recent years, the use of convolutional neural networks 
(CNNs) has significantly increased in various image 
processing fields, including classification [1, 2], object 

detection [3, 4], and segmentation [5, 6]. However, 
high-performance deep CNNs require substantial com-
putational power, with operations such as matrix multi-
plication (MM) demanding on the order of 10–1000 giga-
floating-point operations per second (GFLOPS) [1, 2, 7, 
8]. Therefore, achieving high throughput and power effi-
ciency in computing systems is crucial for the practical 
utilization of CNNs [9]. Traditionally, central processing Hyeonseok Hong and Dahun Choi have contributed equally to this 
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units (CPUs) have been limited by their computational 
throughput, which ranges from 10 to 100 GFLOPS, ham-
pering their ability to completely support real-time CNN 
processing [10]. By contrast, GPUs, such as NVIDIA 
A100, exhibit a peak performance of 19.5 tera-FLOPS, 
enabling real-time operation of CNNs, thereby being 
extensively used in a wide range of applications [11]. 
However, GPUs face challenges such as significant power 
consumption (often exceeding 400 W), large and heavy 
form factors, and expensive prices. Consequently, they are 
primarily used in server environments and are impracti-
cal for deployment on edge devices [12]. Thus, there is a 
growing need for new hardware platforms to enable the 
practical deployment of CNN applications across diverse 
devices.

To address this issue, a CNN accelerator system 
utilizing field-programmable gate arrays (FPGAs) 
has been proposed, offering significant computing 
acceleration while maintaining high energy efficiency 
[13–19]. Unlike traditional instruction-based processors, 
such as CPUs and GPUs, FPGAs leverage register-transfer 
level (RTL) designs to enable flexible and reconfigurable 
designs. By implementing convolution (CONV) and 
MM operations, which constitute a significant portion 
of CNN operations, at the gate level and optimizing 
the computational f low for different models, FPGA 
systems with limited resources can be used to design 
various CNN models with low latency and high power 
efficiency. However, even when implementing the same 
CNN model, FPGA-based CNN accelerators exhibit 
varying hardware utilization and throughput depending on 
the FPGA platform and design methodology. Therefore, 
it is important to achieve optimal performance (i.e., 
throughput and power efficiency) within the constraints 
of limited resources, such as block RAM (BRAM), digital 
signal processing (DSP) blocks, lookup table (LUT), 
and Flip-Flop (FF). Therefore, various computation 
and memory optimization techniques and efficient 
architecture designs that consider FPGA resources 
and model structures are essential [20–22]. This paper 
summarizes the different architectures and optimization 
techniques used for designing FPGA-based CNN 
accelerators. In the Sect. 2, we provide a background 
on CNNs and FPGAs. In the Sect. 3, we provide a brief 
overview of the techniques required for CNN accelerator 
design. In the Sect.  4, we examine the optimization 
methods for maximizing hardware utilization and parallel 
computing. In the Sect. 5, we explore the architectures of 
various FPGA-based CNN accelerators. In the Sect. 6, 
different CNN models implemented on various FPGA 
chips are compared. Finally, in the Sect. 7, we provide a 
summary of this paper and discuss the prospects for CNN 
accelerators.

2  Preliminary

2.1  Convolution neural network

A CNN is a deep-learning model that is primarily used in 
image processing and pattern recognition [1, 2, 23–25]. 
It comprises multiple layers for feature extraction (e.g., 
CONV and fully connected (FC) layer) and nonlinear 
functions (e.g., activation and pooling). During the CONV 
operation, multiplication operations are performed as the 
filter slides across the input feature map with a specific 
stride, summing the products to generate the output 
feature map. This process allows the extraction of local 
information from the image. Iterative stacking of these 
layers allows extraction of low-level features, such as 
corners and edges, in the early layers, progressing toward 
more abstracted high-level features in the deeper layers. 
A CNN applies an activation function to each feature 
and reduces the resolution of the feature map through 
pooling. This process introduces nonlinearity into the 
CNN and facilitates efficient feature extraction from the 
CONV layers. The extracted features are subsequently 
passed through the FC layer, which is structured around 
interconnected input and output nodes that enable the 
calculation of the final output for classification and 
prediction. As a result, CNNs demonstrate superior 
accuracy in image pattern recognition compared to 
conventional machine learning techniques. Consequently, 
the CNN has been widely applied across various domains, 
such as classification [1, 2], object detection [3, 4], 
segmentation [5, 6], and super-resolution [26].

The CONV operation is crucial in CNNs because 
it generates an output feature map by performing 
multiply–accumulate (MAC) operations on an input 
feature map and weighted filter. Figure 1a illustrates a 
conceptual diagram of the CONV operation. Here, Kx and 
Ky represent the size of the filter, with M and N denoting 
the number of channels in the input and output feature 
maps, respectively; W, H, C,   and R correspond to the 
width and height of the input and output feature maps, 
respectively. A filter of size M ∗ Ky ∗ Kx is overlapped 
with the M ∗ H ∗ W  input feature map to obtain single-
pixel output features through element-wise multiplication 
and addition. The filter moves based on stride size while 
performing the operation C ∗ R times and repeating this 
for N filters, thereby obtaining the final output feature map 
of dimension N ∗ C ∗ R . The CONV operation performed 
in one layer can be expressed in pseudocode, as shown in 
Fig. 1b, and the number of operations (i.e., OperCONV ) is 
calculated, as follows:

(1)OperCONV = Kx ∗ Ky ∗ M ∗ C ∗ R ∗ N.
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2.1.1  Convolution operation

2.1.2  Conventional general matrix multiply architecture

CONV operations, comprising six loops, may experience 
performance degradation due to branch instruction 
when executed in conventional computing environments 
such as CPUs and GPUs. To address this challenge, the 
general matrix multiplication (GEMM) method has been 
extensively adopted, whereby the 3D input feature map is 
elegantly reshaped into an (N ∗ K ∗ K) × (R ∗ C) matrix, 
and the 4D filter is reshaped into an M × (N ∗ K ∗ K) 
matrix, subsequently implementing the CONV operation 
through MM. This methodology facilitates the high-weight 
reuse pattern in CONV operations, leading to a significant 
throughput enhancement. Moreover, it is sufficiently versatile 
to be applied to a wide range of model configurations, 
allowing the handling of highly complex tasks. Nevertheless, 
GEMM operations have their limitations. These include 
latency issues during the reshaping process, considerable 
memory overhead arising from substantial matrix sizes, and 
increased power consumption [27]. Consequently, there is a 
pressing need for novel computing platforms and strategic 
optimization formulations for CONV operations, particularly 
to augment the efficiency of CNN inference.

2.2  Field‑programmable gate array

FPGAs are reconfigurable hardware devices suitable for 
digital circuit implementation. FPGAs employ program-
mable logic (PL) based on hardware description languages 
for circuit design and can be categorized into two types. 
The first type, peripheral component interconnect express 
(PCIe)-based FPGAs, are used in large-scale data centers 
without a processing system (PS) and excel in accelerating 

computation tasks with massive data processing require-
ments [28]. Notable examples are Xilinx Alveo [29] and 
Intel PAC chip [30]. By contrast, SoC FPGAs, which have 
an integrated PS, allow designs within the same develop-
ment environment. Owing to their reasonable pricing, low 
power consumption, and compact size, they are extensively 
used in mobile and edge devices for image processing, signal 
processing, and deep-learning applications [31]. This paper 
focuses on the CNN accelerator implemented using SoC 
FPGAs. In SoC FPGAs, the PL enables users to achieve their 
desired hardware design by implementing anything from 
simple logic to complex function modules at the gate level. 
Meanwhile, PS handles complex operations using process-
ing cores, facilitates data communication between off-chip 
memory and PL through memory interfaces, and enables 
interconnection with peripherals (i.e., sensors and displays), 
allowing the construction of complex system-on-chip cir-
cuits [21]. The design of CNN accelerators on FPGAs offers 
several advantages over other hardware devices (e.g., CPU 
and GPU) in terms of design flexibility, power efficiency, 
and latency [32]. First, the flexible and configurable nature 
of FPGAs enables the optimized design of various CNN 
architectures and layer operators. This advantage allows flex-
ible adaptation to new models or algorithm changes. Sec-
ond, FPGAs achieve high power efficiency by performing 
only the optimal calculations required for CNNs. This is 
particularly beneficial in power-constrained environments, 
such as mobile devices and edge computing [12]. Third, 
FPGAs offer very low latency by enabling the direct con-
nection of peripherals to logic through parallel processing 
and I/O interfaces. This advantage is particularly relevant 
in fields where low latency is essential, such as autonomous 
vehicles. FPGAs consist of resources such as PS, arithmetic 
units (LUTs, FFs, and DSP blocks), and on- and off-chip 
memory (dynamic random-access memory). This section 
elucidates the functions of each of these resources in accel-
erator design. Table 1 lists the specifications of FPGA chips 
commonly employed in CNN accelerator research. Notably, 

Fig. 1  Illustration of a convolution operation and parameter shape and b pseudo code
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FPGA boards used in previous papers for which experimen-
tal results have been presented, were included in this paper.

2.2.1  Processing system

The processor core embedded in the PS of FPGAs operates 
separately from the PL. Considering the high performance 
and cost of the processor core, it is used to handle the 
complex operations in CNN implementations that are 
challenging or resource-intensive to implement in PL, such 
as softmax and non-maximum suppression. Such data are 
communicated between the off-chip memory and PL via 
direct memory access (DMA).

2.2.2  Arithmetic units

Arithmetic units within FPGAs are hardware blocks for 
performing various arithmetic operations. FPGAs include 
large-scale arithmetic blocks with low complexity. Typically, 
arithmetic operations can be performed using LUTs, which 
provide output values corresponding to the input values and 
FFs, which store data temporarily. FPGAs contain a signifi-
cant number of LUTs and FFs, allowing the implementation 
of complex logic operations through their interconnection. 
This enables the parallel processing of multiple operations, 
thereby increasing hardware utilization. DSP slices are spe-
cialized hardware blocks within an FPGA that enable the fast 
execution of signal processing algorithms at high speeds. 
The DSP slices contain components such as multipliers, 
accumulators, and registers. These elements accelerate the 

MAC calculations, enabling high-performance computa-
tions. Owing to their high computational throughput and 
superior operational efficiency, DSP slices are primarily 
used to implement processing elements (PEs) for the most 
critical CONV operations in CNN accelerators [33].

2.2.3  On‑chip memory

On-chip memory in FPGAs, known as BRAM, stores feature 
maps, filter weights, and other data, enabling efficient data 
flow design by synchronously delivering data to the PE. 
High-end FPGAs feature an on-chip memory called ultra 
RAM (URAM). With a capacity of 288 Kb per slice, URAM 
offers nine times the storage capacity of standard BRAM, 
which holds 32 Kb per slice. This makes URAM particularly 
suitable for data-intensive applications. Although on-chip 
memory provides fast access, it has a significant size 
limitation, as shown in Table  1. Therefore, in CNN 
accelerators, there is a limitation that all parameters (e.g., 
filters, and feature maps) cannot be stored using on-chip 
memory, and most designs eventually require off-chip 
memory access.

2.2.4  Off‑chip memory

Off-chip memory is typically implemented using dynamic 
random-access memory (DRAM), which offers a relatively 
large capacity and is peripherally connected to the FPGA 
chip. In general, off-chip memory is used to store all the 
necessary filters for the CNN as well as the output feature 

Table 1  Hardware resources in various FPGAs

FPGA Chip Processor core DSPs LUTs FFs On-chip Memory (Mb)

Intel Stratix V 5SGXA7 Nios® II processor 768 469,440 938,880 50.0
Intel Stratix 10 GX 10 M Quard-core ARM Cortex-A53 MPCore with 

CoreSight
3456 693,2160 13,864,320 259.0

Intel Arria 10 GX 1150 Dual-core ARM Cortex-A9 MPCore with 
CoreSight

1518 854,400 1,708,800 54.3

Xilinx Zynq-7000 XC7Z020 Dual-core ARM Cortex-A9 MPCore with 
CoreSight

220 53,200 106,400 4.9

Xilinx Zynq-7000 XC7Z045 Dual-core ARM Cortex-A9 MPCore with 
CoreSight

900 218,600 437,200 19.2

Xilinx Zynq Ultrascale + XCZU2EG Quard-core ARM Cortex-A53 MPCore with 
CoreSight

240 47,232 94,464 5.3

Xilinx Zynq Ultrascale + XCZU7EV Quard-core ARM Cortex-A53 MPCore with 
CoreSight

1728 230,400 460,800 BRAM 11.0, URAM 27.0

Xilinx Zynq Ultrascale + XCZU9EG Quard-core ARM Cortex-A53 MPCore with 
CoreSight

2520 274,080 548,160 32.1

Xilinx Virtex-7 XC7VX485T MicroBlazeTM processor 2800 303,600 607,200 37.0
Xilinx Virtex-7 XC7VX690T MicroBlazeTM processor 3600 433200 866400 53.0
Xilinx Virtex Ultrascale + XCVU9P Quard-core ARM Cortex-A53 MPCore with 

CoreSight
6840 1,182,240 2,364,480 BRAM 75.9 URAM 270.0
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maps and input images resulting from the CONV operations 
within the PL. However, communication between the PL and 
off-chip memory is typically limited to the PS and DMA, 
resulting in relatively high latency and power consumption. 
Therefore, most CNN accelerator designs aim to minimize 
off-chip memory access [13, 34, 35].

3  Brief overview of CNN accelerator design

This paper primarily focuses on FPGA accelerator design, 
examining two key aspects for effective implementation 
(see Fig. 2). The first is the optimization technique. At the 
hardware level, ongoing research aims to maximize the uti-
lization of parallel processing techniques, such as unrolling 
and batching, to alleviate computational bottlenecks and 
improve performance. Additionally, studies have sought to 
minimize DRAM access costs through double buffering, til-
ing, distributed BRAM, and memory hierarchy utilization. 
Compression methods, including quantization, pruning, and 
winograd, have also been explored to efficiently utilize lim-
ited resources by reducing MAC operation costs. The effec-
tive integration of these techniques is crucial for developing 
FPGA-based CNN accelerators that reduce computational 
complexity and minimize memory access for enhanced 

performance. The second key factor is the hardware archi-
tectural design, which is critical in designing an efficient 
implementation of CNN characteristics. The performance 
of an accelerator can be improved based on the design of 
the processing unit (PU). Research on fusing operations 
between adjacent layers aims to increase operational effi-
ciency and reduce memory access costs. Additionally, vari-
ous architectures can be designed, such as systolic arrays 
(SAs), leveraging a pipelined approach with multiple PE and 
multi-PU to prevent the idle state of PEs. Finally, given the 
operational characteristics of CNNs, notably, a technology 
that divides and processes calculations between the CPU 
and FPGA, known as CPU-FPGA collaborative computing, 
higher performance can be achieved compared to a single 
computing platform.

4  Optimization techniques of CNN 
accelerators for FPGA implementation

To implement CNN models efficiently on FPGA systems 
with limited memory capacity and available resources, 
employing various optimization techniques is crucial. 
These techniques generally include computational 
optimization [15, 16, 36–38], memory optimization [34, 

Fig. 2  Classification of various approaches for CNN accelerator design
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39–48], and compression [18, 49–55]. Integrating these 
techniques effectively is essential in developing FPGA-
based CNN accelerators, as they contribute to optimizing 
its performance by reducing computational complexity and 
minimizing memory accesses.

4.1  Computational optimization

Representative computational optimization techniques that 
improve the performance and maximize the efficiency of 
CNN accelerators on FPGAs include unrolling to improve 
parallel processing and tiling to reduce memory access costs. 
Repetitive calculations can be executed at once through 
unrolling, and overall system performance can be improved 
by minimizing memory access through tiling.

4.1.1  Unrolling

Unrolling is a technique used to reduce the number of 
iterations in a loop. It is an optimization technique aimed 
at improving performance by minimizing the overhead 
caused by the large number of iterations involved in the 
CONV operation. In FPGAs, it is possible to reduce com-
putation costs more effectively by utilizing the parallel-
ized hardware structure to perform multiple computations 
simultaneously. As depicted in Fig. 3, the iteration of the 

CONV layer consists of four levels: kernel loop ( Px,Py ), 
input channel loop ( Pm ), intra-channel loop ( Pw,Ph ), and 
output channel loop ( Pn ). By applying the unrolling tech-
nique to the kernel loop, multiple kernel elements can be 
processed simultaneously, and by applying the unrolling 
technique to the input channel loop, CONV operations can 
be performed at multiple feature map locations simultane-
ously. Moreover, unrolling the intra-channel loop enables 
concurrent operations on multiple input channels, while 
unrolling the output channel loop allows simultaneous 
operations on multiple output channels. Unrolling these 
loops at different levels in CONV operations effectively 
reduces overhead. For instance, unrolling the intra-channel 
loop minimizes memory access by leveraging weight reuse 
and facilitates parallel processing of multiple multiplica-
tion operations. Rahman et al. [15] proposed a new archi-
tecture called the input-recycling CONV array of neurons, 
which optimizes memory and computational resources. 
However, this architecture suffered from high computa-
tional complexity as a disadvantage. To address this issue, 
the internal CONV operation was optimized by unroll-
ing the intra and output channels, thereby reducing the 
complexity of the architecture. Ma et al. [16] designed 
a CONV and pooling layer to parallelly output adjacent 
feature maps, which led to an issue of overlapping data 
and computations in the normalization module. The output 

Fig. 3  Four levels of convolu-
tion loop unrolling from [43]
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channel loop was unrolled to avoid data overlap. In addi-
tion, the design incorporated the reuse of intermediate 
pixels to save memory. Motamedi et al. [36] proposed the 
parallel convolution engine (PCE) that leverages paral-
lelism by unrolling the kernel, input, and output loops. 
They achieved approximately a 1.9% speed improvement 
by unrolling the kernel loop and combining multiplica-
tion and addition units to exploit parallelism on the same 
FPGA device. It is, therefore, crucial to choose the appro-
priate unrolling strategy for each loop level, considering 
the specific requirements and constraints of the hardware.

4.1.2  Batching

Batching, which processes multiple input images simul-
taneously to enhance the throughput, can be applied to 
operations that compose CNNs, such as CONV and FC 
layers. In Fig. 4, we can see the application of batching 
during FC operations. Using the same weight addressing 
for multiple input data operations, it maximizes weight 
data reuse, converting vector multiplication into MM, 
achieving N times the throughput. Li et al. [37] imple-
mented batching to diminish the weight load required for 
FC operations thereby reducing the necessity for off-chip 
memory access. Their approach effectively maximizes the 
reuse of FC weights, allowing for computations on multi-
ple input data with minimal DRAM access. Furthermore, 
the study introduced a novel technique to counterbalance 
the increased output buffer consumption caused by larger 
batch sizes in successive FC layer operations, by shift-
ing the weight window addressing pattern from a verti-
cal (Fig. 4b) to a horizontal orientation (Fig. 4c), thus 
requiring less space for temporary results. Remarkably, 
this technique achieved a performance efficiency of 391 
frames per second (FPS) on Xilinx XC7VX690T, demon-
strating its significant impact on computational efficiency. 
Jia et al. [38] proposed an accelerator with three levels 
(i.e., core, graph, and batch) of scalability for various CNN 
model operations. They processed multiple input images 
synchronously in the operation unit graph. Leveraging the 
characteristic that weights are shared for each input, they 
boosted throughput using just one weight buffer and pro-
posed a scalable design capable of 1–8 batch operations. 
As a result, through the application of various paralleliza-
tion techniques, the authors achieved 8 × throughput. In 
conclusion, although batching can significantly increase 
throughput through parallel operations, the resource con-
sumption such as PE or on-chip memory storage required 
to process the increased operations due to batch size must 
be considered.

4.2  Memory optimization

In addition to Subsection Computational Optimization, 
harmonious design between memory, which stores operands 
(e.g., CONV filter, FC weight, and feature map), and PE is 
necessary to maximize operational efficiency and implement 
low-power systems. As introduced in Subsection Field-
programmable gate array, the memory used in FPGA 
systems can be largely divided into on-chip memory (e.g., 
SRAM, BRAM, cache, and buffer) and off-chip memory 
(e.g., DRAM). Despite the advantages of BRAM fast access 
time and high scalability, it is impossible to store all massive 
operands, such as those of ResNet-101 [1] (i.e., 44 M weight 
parameters, 170 MB) and VGG-16 [7] (138  M weight 
parameters, 527 MB), due to the limited capacity of BRAM. 
Therefore, the parameters of CNN models must be stored 
in DRAM, which provides a larger capacity, and data must 
be loaded to the PL via an interface (i.e., AXI) and DMA. 

Fig. 4  Illustration of FC operation from [37]. a FC operation single 
image processing, b batching FC vertical weight addressing, c hori-
zontal weight addressing
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However, the energy consumed in DRAM access (i.e., 
640 pJ) is approximately 130× greater than that in SRAM 
access (i.e., 5 pJ) [56], and the throughput of accelerators 
is negatively impacted due to bandwidth limitations and 
long latency. Therefore, this subsection explains memory 
optimization methods that reduce off-chip memory access 
and maximize the utilization of capacity-limited on-chip 
memory to provide an efficient data flow of operations for 
the accelerator.

4.2.1  Double buffering

In CNN accelerators, the on-chip memory not only 
exchanges data with the off-chip memory but also delivers 
operands connected to the PE and stores the results of MAC 
operations. However, a single buffer cannot perform both 
functions at once, and during communication with the 
off-chip memory, the PE becomes idle. This significantly 
lowers PE utilization and increases latency. Double buffering 
is a method used to address this issue, using two buffers 
to simultaneously process data delivery to the PE and data 
loading from the off-chip memory. When double buffering 
is applied, one buffer communicates with the PE and is 
used for the current layer operation, while the other buffer 
loads the data necessary for the next layer operation from 
the off-chip memory. The roles of the two buffers switch 
every time a layer is completed, which is referred to as 
“ping-pong”. The advantage of double buffering is that it 
can hide latency caused by data transfer, as it can load the 
necessary data during the layer operation time. Podili et al. 
[39] applied the double buffering technique to the kernel 
buffer by connecting one input buffer and several kernel 
buffers to the PE. When implementing the VGG-16, they 
reduced latency by hiding the data refill time through at least 
196 data reuses. Li et al. [40] proposed a block CONV to 
minimize off-chip memory access, allowing multiple tiles 
to be loaded iteratively and written to the main memory 
by partitioning the feature map into 27× 48 small tiles and 
then applying double buffering. Bai et  al. [41] applied 
double buffering to the weight buffer to reduce the latency 
of filter loading, which varies for the three types of CONVs 
(i.e., standard, depth-wise, point-wise) that compose 
MobileNetV2. They were able to implement an accelerator 
with a weight buffer size of only 36Kb, with 3.7% usage 
of Intel Arria 10 GX 1150. Fan et al. [42] not only used 
the traditional classification loss of cross entropy but also 
introduced latency and energy as losses in their network 
architecture search approach. This allowed them to find the 
optimal compressed network within limited resources. By 
applying a ping-pong mechanism to both the input feature 
map and weight buffer, they managed to hide latency due 
to off-chip memory access, achieving a performance of 319 
FPS on Intel Arria 10 GX 1150. However, compared to a 

single buffer, double buffering has the drawback of resulting 
in structural changes that complicate the memory controller 
and generally increase on-chip memory usage.

4.2.2  Tiling

In the FPGA implementation of CNN accelerators, the 
CONV operation, which accounts for the majority of 
computations, is performed through MAC operations within 
the PE. Typically, the PE receives the feature input and 
weights as operands from on-chip memory (i.e., BRAM). 
However, there are capacity limitations regarding holding 
feature maps and weights in BRAM, especially as their sizes 
increase proportionally with the complexity of the model. 
Consequently, the implementation of an accelerator for large 
CNN models relies on loading feature maps and weights 
from off-chip memory (i.e., DRAM). However, fetching 
large amounts of data from DRAM can have a significant 
negative impact on layer and network latency [13]. To 
address this issue, tiling is employed to fetch the required 
feature data from DRAM in block-sized units, known as tiles. 
These tiles are then stored in BRAM, allowing for maximum 
reuse of fetched data and enabling the computation of 
CONV operations in complex models with limited on-chip 
memory resources. Tiling divides the input feature map into 
T tiles, reducing the on-chip memory requirement to 1/T of 
the original size. This enables efficient BRAM utilization 
and facilitates the implementation of complex CNN models 
on FPGA platforms with limited resources. Ma et al. [43] 
defined the latency associated with tiling, including the 
intra-tiling loop (on-chip memory access) and inter-tiling 
loop (off-chip memory access). They analyzed each tiling 
technique to explore the trade-off between on-chip memory 
size and external memory access. Then, they proposed a 
design methodology to identify the optimal on-chip memory 
size and latency. As a result, they implemented VGG on 
Intel Arria 10 GX 1150 achieving a throughput of 645 giga 
operations per second (GOPS). Zhang et al. [44] addressed 
the issue of frequent DRAM access caused by the row-
major representation of feature maps in tiling-applied RTL 
designs using high-level synthesis. They proposed cube 
index transformation and DRAM layout techniques to 
maximize the utilization of DRAM memory burst length 
and bit width. Basalama et al. [45] proposed a technique 
called “dynamic tiling”, in which a different tiling factor is 
assigned to each layer of the network. This approach enables 
data feeding between line buffers and results in a 1.7× 
performance improvement in terms of latency compared to 
traditional uniform tiling methods. Indeed, tiling has some 
limitations that need to be considered. One limitation is 
the increase in design complexity due to changing access 
patterns in on-chip memory. This can introduce additional 
challenges in the design process. Additionally, the frequent 
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off-chip memory communication in tiling-based designs 
can result in power inefficiency, which can be a significant 
drawback from a power-efficiency perspective. Therefore, it 
is crucial to carefully analyze and address these challenges 
when employing tiling techniques so that the overall design 
trade-offs can be optimized and the desired performance and 
efficiency goals can be achieved.

4.2.3  Distributed BRAM

Distributed BRAM is a method of maximizing PE utilization 
by placing dedicated BRAM at the PE. Figure 5a, b show an 
overview of centralized BRAM and distributed BRAM. In 
centralized BRAM, because all PEs share a global buffer and 
data path, a data bottleneck occurs when the data demand 
of the PE increases. This results in a significant decrease 
in PE utilization due to the increased number of unused 
PEs. In contrast, distributed BRAM maintains high PE uti-
lization and increases processing speed through operation 
parallelization by placing a dedicated buffer for each PE, 
allowing all PEs to be used simultaneously for operations. 
Ryu et al. [34] placed a PE and SRAM buffer for each chan-
nel and performed separable channel-wise CONV opera-
tions [23], allowing for various MobileNet [23, 24] designs 
through channel stationary techniques. Moreover, by stor-
ing all weights and feature maps used in each channel in 
distributed SRAM, they implemented depth-wise separable 
CONV operations within MobileNet without accessing off-
chip memory. Gao et al. [46] proposed a tile architecture, 
which combines multiple small PE arrays, and implemented 
coarse-grained parallelism through data sharing by placing 
a buffer for each tile. Aydonat et al. [47] proposed stream 
buffer arrays, which supply the input feature map needed for 
CONV layer execution to PEs and store the CONV output 

in the buffer. By storing filters in each PE cache, they mini-
mized idle computations in the PE. Song et al. [48] proposed 
a kernel pruning method called hardware-oriented regular 
pruning, utilizing the finite impulse response (FIR) filter, 
and implemented a double CONV PE module. By allow-
ing each PE to process two 1D kernel weights and an input 
feature map, they designed an efficient pruning-aware accel-
erator. As a result, they achieved a significant 5.83× weight 
compression at VGG and reduced the MAC usage by 1.46× , 
while still attaining a high throughput of 110 FPS on Xilinx 
XCVU9P. However, when using distributed BRAM, each PE 
can only use a small buffer size due to the limited on-chip 
memory resources within the FPGA. Moreover, data sharing 
between PEs can lead to BRAM access conflicts.

4.2.4  Memory hierarchy Utilization

Memory hierarchy aims to overcome the limited capacity 
of on-chip memory and resolve the high latency and power 
consumption issues of off-chip memory by operating a 
combination of various levels of memory (i.e., DRAM, 
cache, buffer, etc.) (see Fig. 5c). Pacini et al. [35] proposed 
a method to increase power efficiency by minimizing off-
chip access and drastically reducing on-chip memory 
usage. Instead of connecting the on-chip buffer used in 
the PE and the off-chip memory, they implemented L1 
and L2 cache to store the feature map repeatedly used in 
operations in the L1 cache, thereby maximizing data reuse. 
Chen et al. [17] established a four-level storage hierarchy 
(i.e., off-chip DRAM, global buffer, FIFO array, and 
register file) and analyzed the energy cost arising from data 
movement in each storage. Pellauer et al. [57] proposed a 
“buffet” memory, which borrows the explicit decoupled 
data orchestration taxonomy to solve the inefficiency of 

Fig. 5  Various CNN accelerator memory system from [37]. a Centralized BRAM, b distributed BRAM, c hierarchical cache
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implicit data orchestration inherent in traditional caches 
and the inflexibility in data reuse found in FIFO. The 
authors established a memory hierarchy by dividing the 
buffet into three levels and applying it to the tiled-GEMM 
operation accelerator, demonstrating energy efficiency that 
is 1.53× and 5.39× greater compared to traditional double-
buffered scratchpads and cache, respectively. However, 
implementing a memory hierarchy system in FPGA-based 
CNN accelerators presents challenges compared to designs 
using simple on-chip memory.

4.3  Compression

The compression technique is employed in CNN accelerators 
to decrease memory bandwidth and computational 
demands. Notably, traditional models such as ResNet-18 
and ResNet-50 [1] possess substantial model sizes (i.e., 
ResNet-18: 46.8 MB, ResNet-50: 97.5 MB). Developing 
CNN accelerators for these models requires significant 
computational resources and frequent DRAM access, 
resulting in heightened latency and increased power 
consumption. CNN compression techniques are essential 
for addressing these challenges. In this section, we explain 
quantization, which is one of the most widely utilized 
compression methods in CNN accelerator design and 
provide a brief overview of other compression techniques, 
such as pruning [58, 59] and Winograd [60].

4.3.1  Quantization

Quantization is a compression technique that converts 
32-bit floating-point data (FP32) into low-precision integer 
or fixed-point formats [61]. Some information is inevitably 
lost when converting 32-bit data into low-precision format. 
However, accuracy can be recovered through quantization-
aware training, achieving even higher accuracy than that 
of the baseline through recent quantization research [54]. 
By performing INT8 operations instead of the traditional 
FP32 operations during CONV in the MAC unit of CNN 
accelerators, an approximately 4 × faster inference speed 
can be achieved while reducing energy consumption by 
approximately 18.5× [62]. In addition, this technique 
effectively reduces the size and memory footprint of the 
model, making it highly efficient in resource-constrained 
environments [53].

Quantization can be classified based on the data format 
used in MAC operations. Guo et al. [49] presented a linear 
quantization technique in the most widely used INT format. 
By converting the weight and activation values of each 
layer to integers, this technique offers advantages such as 
reduced computational complexity compared to floating-
point formats, improved computational speed, and simplified 
hardware implementation. Park et al. [50] quantized the data 

format to fixed-point numbers, thereby enabling hardware-
friendly operations through a combination of integers and 
shift operations (fraction bits), while also providing an 
advantage in terms of accuracy by expressing a wider range 
than the integer format. Vogel et al. [51] performed the 
CONV operation in logarithmic form by taking logarithms 
of weights and activations. Although this method involves 
nonuniform quantization intervals, it can significantly 
reduce hardware resource usage and power consumption 
compared to other data formats by allowing operations in 
addition to multiplication. However, quantization using 
this method requires a significant number of LUTs, and the 
quantizer has higher latency than other techniques. Wang 
et  al. [18] significantly reduced memory consumption 
and computation on Zynq-7000 XC7Z045 through a low-
precision CNN model. However, to ensure high network 
accuracy, the first and last layers had high precision, and 
binary and ternary quantization were applied to the middle 
layers. The experimental results showed a decrease of 2.6% 
in accuracy compared to the baseline when all middle layers 
were quantized as ternary in AlexNet, and a decrease of 
0.7% was obtained compared to the baseline when all layers 
were quantized as 8-bit. Lee et al. [52] used the stochastic 
computing (SC) technique to effectively quantify CNN 
because the quantization performance can vary greatly 
depending on the dataset, training method, and network. 
However, SC has the problem of high latency in CNN 
accelerator design and poor high-precision quantization. 
To solve the high latency caused by SC, this research 
applied logarithmic quantization to reduce resource and 
computational costs. Compared with linear quantization, 
the latency of the operation was reduced through lower-
precision quantization, and the computational cost was 
effectively reduced by addition instead of multiplication 
MAC operations. Qiu et al. [53] observed variations in 
the quantization range of weights and activations across 
different layers. To address this issue, they analyzed the 
distribution of each layer and determined the configurations 
that minimized quantization errors. Specifically, they 
allocated eight or four bits to different layers. Experimental 
results on VGG16-SVD demonstrated that the proposed 
approach achieved an accuracy similar to that of the 
baseline, while providing an approximately 1.4× faster 
processing speed than the CPU. Because each data format 
has different advantages and disadvantages, a quantization 
strategy should be selected considering the data format that 
is most suitable for the specific environment. Sun et al. [54] 
presented an efficient FPGA acceleration method for CNNs 
with intra-layer and mixed-precision quantization. They 
addressed the issue of irregular distribution of 8-bit filters 
throughout the entire layer on FPGA due to mixed-precision 
quantization, where bit operations are processed separately. 
This technique divides the filters in each layer into several 
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weighted tiles, each containing a certain number of filters. 
For each weight tile, the filter ordering is reorganized such 
that the first tiled filters are preserved as 8-bit quantized 
filters, and the remaining filters in the tile are quantized into 
4-bit. This reduces the indexing overhead and improves 
computation throughput. Through this method, a throughput 
improvement of approximately 39% was achieved on Xilinx 
Zynq-7000 XC7Z020.

4.3.2  Other compression methods

Pruning is a prominent CNN compression technique that 
effectively reduces model size and computational workload 
by removing redundant weights, particularly in accelerators. 
However, because many of the weights become zero, it can 
be even more effective in reducing computational cost in 
conjunction with the zero-skipping technique [58]. The zero-
skipping technique skips computations when the data are 
zero, thereby avoiding unnecessary operations. When used 
alongside weight pruning, which sets many weights to zero, 
this approach further optimizes computational efficiency. 
Algorithms have also been designed to optimize CONV 
operations, which account for the majority of computations 
in CNNs. One notable example is the Winograd algorithm 
[60], which is a mathematical technique used in CNNs to 
optimize and enhance CONV operations, primarily by utiliz-
ing MM. This method aims to minimize multiplication and 
memory requirements, thereby providing fast computation 
and energy efficiency and plays a crucial role in achieving 
high performance, particularly on FPGA and other hard-
ware accelerators. Most accelerator compression studies 
apply a single compression technique. However, some stud-
ies have designed accelerators by integrating two compres-
sion techniques. Meng et al. [55] designed an accelerator 
that exclusively utilizes on-chip memory without external 
memory access, in contrast to conventional CNN accelera-
tors that access external memory to store the parameters. To 
achieve optimization using only on-chip memory, a method 
that combines quantization and structured sparsity was 
proposed. First, the weights are divided into small groups. 
Within each group, the smallest weights are set to zero, thus 
sparsing that particular group. To achieve high element-
wise sparsity, the importance of the weights is evaluated 
by considering the relative magnitudes of all the surviving 
weights within the same layer. Based on the importance 
scores assigned, weights are globally pruned, starting from 
those with the smallest scores, thereby gradually increasing 
sparsity. Next, quantization is applied to approximate the 
weights using small integers. This approach simultaneously 
performs structured pruning and quantization, leveraging the 
advantages of both techniques. They, thus, achieved a sig-
nificantly more compressed accelerator design than previous 

CNN accelerators, resulting in a 2.34× higher GOPS in Ima-
geNet classification.

5  Hardware architecture of CNN 
accelerators on FPGA platforms

In this section, we introduce various architectures (i.e., 
fused-layer architecture, multi-PU architecture, systolic 
array (SA) architecture, and CPU-FPGA collaborative 
computing architecture) to enhance the efficiency of the 
CNN accelerator. First, we introduce the fused-layer 
architecture [63–66], which fuses and processes operations 
of adjacent layers, and the multi-PU architecture [14, 
67–69], which uses multiple processors to efficiently handle 
operations of various shapes. After that, we elaborate on 
the SA architecture [15–17, 70, 71], which uses a PE grid 
in a pipeline manner, and the CPU-FPGA collaborative 
computing architecture [72–75], which is designed to 
efficiently handle tasks specialized for both CPU and FPGA.

5.1  Fused‑layer architecture

The design of existing CNN accelerators in FPGAs primar-
ily optimize and evaluate parallelism, reusing the data in 
a single CONV layer [76]. However, this method requires 
access to off-chip memory to store the intermediate data 
between layers, resulting in high power consumption and 
long latency. To solve this problem, the fused-layer method 
performs operations by fusing adjacent layers. As shown in 
Fig. 6, the fused-layer method can efficiently reduce DRAM 
access by fusing connected Layer1 and Layer2 without pro-
cessing each CONV individually. The fused-layer method 
is an approach that leverages the locality of convolution 
operations. To achieve this, Layer1 is designed to compute 
the outputs in the order required for the subsequent Layer2 
operations, whereby Layer 1 performs operations on the 
input feature map tiles. The intermediate feature map pro-
duced by Layer1 is not stored in off-chip memory. Instead, it 
is directly utilized as the input feature map for Layer 2. Con-
sequently, the fused-layer method reduces DRAM access 
by transmitting intermediate feature maps to the subsequent 
layer without storage. It also optimizes memory utilization 
by promptly discarding intermediate data after use in the 
next layer. The fused-layer method minimizes overall data 
transfer overhead, thereby contributing to a more stream-
lined and resource-efficient deep learning model. Alwani 
et al. [63] proposed a method for manipulating on-chip data 
inflow and a technique for fusing the processing of the sub-
sequent CONV layers using a pyramid-shaped multi-layer 
sliding window. This fusion layer enables the on-chip cach-
ing of intermediate data, which can effectively reduce data 
transfer from off-chip memory. The fused-layer design using 
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VGG-16 on the Xilinx Virtex-7 FPGA dramatically reduced 
off-chip usage from 77 MB to just 3.6 MB. Erdem et al. 
[64] optimally fused just two CONV layers. In other words, 
unlike a full pyramid, which fuses until one output pixel is 
generated, they used a tile-based truncated pyramid. This 
method can achieve a more efficient trade-off in memory 
usage by adjusting the tile size. Specifically, the tile-based 
truncated pyramid design, employing only two fused layers 
and VGG-16 on the Xilinx Zynq-7000 XC7Z020 FPGA, 
enhanced the computation to communication ratio (CCR) 
from 49.4% to 81.6%. As a result, unlike the full pyramid 
approach, which requires storing massive amounts of inter-
mediate data in the on-chip memory, the tile-based truncated 
pyramid design is efficient, even on FPGAs with only 4.9 
Mb BRAM size. Indirli et al. [65] proposed a configurable 
design of a fused-layer accelerator that can accelerate more 
than two layers simultaneously. The proposed design uses 
half-precision and output tiling to reduce memory usage. 
Output tiling partitions the output feature map into square 
tiles, enabling parallel computation of the divided tiles. This 
method allows more data to be processed simultaneously. 
Specifically, when using VGG-16 on the Xilinx XCZU15EG 
FPGA, this method achieves 42× speedup and reduces trans-
fers from external memory by 95x compared to a single-layer 
design. However, if the same optimization scheme is applied 
to all layers, the different feature maps and parameter sizes 
used in each layer of CNNs, present a limitation in efficient 
acceleration as CNNs process operations of different shapes. 
To overcome this limitation, Nguyen et al. [14] designed 
different mixed-precision and layer-specific architectures for 
each layer to reduce the DRAM access caused in transmit-
ting feature maps. They also proposed streaming CONV, 
which allows the simultaneous computation of consecutive 
CONVs. As a result, they reduced the model size by a factor 
of 22.66× for YOLOv3 and 28.93 × for Tiny-YOLOv2. They 
also achieved 1.88 tera operations per second (TOPS) on the 

Xilinx Virtex-7 XC7VX485T. Wu et al. [66] proposed an 
architecture that combines CONV and shortcut layers. This 
architecture places a shortcut operation before the CONV 
operation and utilizes the input features from the previous 
layer stored in DRAM, which effectively reduces unnec-
essary DRAM accesses in the shortcut operation, thereby 
achieving a bandwidth reduction of approximately 38.03% 
on the Xilinx XCZU9EG.

5.2  Multi‑PU architecture

In conventional CNN accelerator approaches, a single PU is 
used to serially process one CONV layer at a time. However, 
single-PU accelerators using the same processing structure 
cannot efficiently handle CNNs with various shapes (e.g., 
channel) and types (e.g., depth-wise CONV). Therefore, 
recent approaches have used multiple processors to process 
operations of various shapes. Figure 7 presents an exam-
ple calculation for eight CONV layers of different shapes. 
The x- and y-axes represent time and PE utilization, respec-
tively. In Fig. 7a, the use of a single PU is optimized only 
for specific CONVs, resulting in idle PEs and other CONV 
operations. Meanwhile, in Fig. 7b, the use of two PUs ena-
bles the parallel processing of operations with different 
shapes. Therefore, in terms of PE utilization and operation 
time, it is more efficient than a single-processor structure. 
Shen et al. [67] divided available hardware resources into 
smaller processors to efficiently handle CONV layers with 
different shapes. Such accelerator designs using multiple 
processors can process adjacent CONV in a pipeline man-
ner, thus achieving high computational efficiency and 1.51× 
throughput for AlexNet on Xilinx Virtex-7 XC7VX690T. 
Wu et al. [68] proposed an accelerator targeting MobileNet, 
consisting of various types of CONVs (e.g., depth-wise, 
point-wise). They raised the issue of many PEs not being 
utilized when calculating the depth-wise CONV layers in 

Fig. 6  An example of a fused-
layer in two convolution layers 
from [63]
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a single-processor design. As a solution, they proposed the 
MobileNet accelerator that uses separate processors specifi-
cally designed for standard and depth-wise CONV layers 
instead of using a general CONV processor. Consequently, 
the proposed method achieved speedups of 8.4× and 33.6× 
over the CPU on Xilinx XCZU2EG and XCZU9EG, respec-
tively. Qararyah et al. [69] proposed a hybrid architecture, 
whereby a single PE handles a single layer for the initial 
layers that exhibit greater heterogeneity; whereas in the 
remaining layers, a single PE handles multiple layers. As a 
result, the proposed accelerator architecture achieved 1.7× 
and 4.1× throughput improvements compared to the single 
PE accelerator structures for the MobileNetv1 model on 
Xilinx XCZU2EG and XCZU9EG, respectively. However, 
this architecture has several limitations. First, as the opera-
tions vary between layers in the model, the required number 
of PEs increases, causing significant resource consumption. 
Second, a significant memory bandwidth is required to drive 
multiple PEs simultaneously. Third, as the number of PEs 
increases, the overhead of the control logic grows. There-
fore, in cases where the model consists of many layers that 

perform similar CONV operations, designing one PE to pro-
cess multiple layers is efficient, as shown in Fig. 6a.

5.3  Systolic array architecture

The SA is a parallel-computing structure with multiple 
deeply pipelined PEs [15]. Each PE processes input data 
and forwards output data to the next PE. This structure has 
advantages in parallel computation and is often used in CNN 
accelerator implementations. Figure 8 shows the structure of 
a 2D SA and a schematic of the single PE used to implement 
a CNN accelerator. A 2D SA consists of multiple densely 
pipelined PEs, each composed of a buffer and accumulator. 
In each cycle, for one PE (x, y), the input data are passed to 
PE ( x + 1, y ) and weight data are passed to PE ( x, y + 1 ). 
Moreover, each PE accumulates the product of the input 
and weight data passed from the adjacent PE ( OUTxy ), and 
output data move outside through the PE array. This SA 
architecture can achieve high frequency by solving the tim-
ing issues encountered in massive parallelization through 
local interconnects and data transfers shifted between PEs. 
However, the mapping of a CNN model onto the SA is not 

Fig. 7  An example of a network pipeline according to the processor for eight convolution layers from [68]. a Single convolution processor and b 
multi-convolution processors
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straightforward. Wei et al. [70] mapped a CNN model onto 
the SA through the following three stages: (1) find a feasible 
mapping; (2) select a PE array shape; and (3) determine the 
data reuse strategy. In the first stage, they found a feasible 
mapping for 3D CONV operations on 2D SA. In the second 
stage, they selected the PE array shape that influences the 
number of DSPs, clock frequency, and DSP utilization by 
determining the size of each dimension. Finally, by select-
ing an appropriate tiling size that allowed extensive data 
reuse, they found the SA configuration that yielded opti-
mum throughput and hardware utilization. Utilizing the SA 
design, a comparable performance enhancement of 1.8× 
GOPS was achieved on the same Intel Arria 10 GT 1150 
FPGA, in contrast to a previous VGG accelerator [43] that 
uses a comparable number of DSPs and LUTs. Chen et al. 
[17] introduced a new data flow called row stationary (RS) 
to minimize energy consumption due to data movement in 
SA. The RS approach decomposes a 2D CONV into multiple 
one-dimensional (1D) CONVs for processing. This maxi-
mizes the reuse of filters and feature maps, minimizing the 
cost of accumulating partial sums. Unlike traditional data 
flow methods, RS is flexible and can be adapted to a variety 
of CNN architectures. RS maximizes energy efficiency by 
fully utilizing the local storage of PE, direct communication 
between PEs, and spatial parallelism. In the experiments 
using the CNN configuration of AlexNet, the proposed 
RS data flow showed 1.4–2.5× greater energy efficiency in 
CONV operations and 1.3× greater efficiency in FC opera-
tions than conventional data flows. Zhang et al. [77] pro-
posed a 2D SA design to improve frequency. The authors 
indicated that the critical path caused by the formation of 
a long DSP chain within the PE of the existing accelera-
tor, is detrimental to the frequency. To solve this problem, 
they designed the SA accelerator that divides the data path 
of the DSP accumulation chain into multiple segments, 
selecting the sum of one segmentation to output through 

a multiplexer (MUX) in each cycle, thereby achieving a 
1.29× higher frequency and 1,495 GOPS performance on 
the Xilinx KCU1500 platform for the VGG16 network. The 
specialized design of SA focusing on data reusability, can 
achieve efficient data processing and minimize data move-
ment, resulting in high-throughput and energy-efficient 
characteristics. However, a significant drawback of SA is 
its poor hardware utilization performance in nonrepetitive 
operations. To address this issue, Selvam et al. [71] proposed 
a method called fully separable convolution (FuSeConv), 
which transforms the less data-reusable depth-wise sepa-
rable CONV into a 1D CONV. FuSeConv decomposes the 
traditional CONV filter ( K ∗ K ∗ C ) into two groups of 1D 
filters ( K ∗ 1 ∗ C∕D and 1 ∗ K ∗ C∕D ), and partially sums 
them, thereby enabling mapping onto a 2D SA structure. 
Consequently, applying a depth-wise separable CONV to a 
64 × 64 PE array, they achieved a 3 × to 7 × speedup on the 
MobileNet family (MobileNetV1-3, MnasNet).

5.4  CPU‑FPGA collaborative computing architecture

The CPU-FPGA collaborative computing architecture 
leverages the collaboration between a CPU and an FPGA 
to provide high-performance computing. This architecture 
offers higher power efficiency and throughput than a single 
computing platform. The CPU is responsible for handling 
software-oriented flexible algorithms with low parallelization, 
executing general instruction-based tasks, whereas FPGA 
accelerates specific tasks with high hardware parallelism. 
When designing an accelerator, considering the roles of the 
CPU and FPGA is essential in enabling efficient distribution of 
computational tasks, to achieve high-performance computing 
and flexible programming. Qiao et  al. [72] proposed a 
technique that accelerates CNNs by allocating specialized 
computations to FPGA and CPU. They designed the MM 
accelerator on FPGA to accelerate the CONV and FC layer 

Fig. 8  Systolic array architecture
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operations, with the remaining tasks performed on the CPU. 
In addition, they addressed the latency caused by frequent data 
copying, by employing a virtual memory approach to allow the 
CPU and FPGA to operate in the same memory space using 
DMA to transfer data to on-chip memory. Comparing their 
approach to those implemented on general-purpose devices, 
they achieved a performance improvement of 3.54× compared 
to using the Intel Xeon X5675 CPU, and an energy efficiency 
improvement of 4.7× compared to using the Nvidia K20 
GPGPU. Wang et al. [73] proposed a design approach for the 
YOLOv2 network, whereby non-performance-critical layers, 
such as max-pooling and concatenation, are assigned to the 
CPU, dedicating all FPGA hardware resources to accelerating 
the CONV layers. They introduced interbatch layer-wise 
pipelining, which enables the CPU and FPGA to concurrently 
process operations from different layers when multiple input 
images are present, achieving a throughput improvement of 
1.17× compared with the model in which max-pooling was 
implemented on Intel Arria 10 GX 1150 FPGA. Meloni et al. 
[74] introduced a design approach to accelerate operations 
such as CONV and pooling by implementing a convolution 
engine (CE) in the PL of the FPGA. They efficiently handled 
off-chip memory communication, specifically, the data 
marshaling layer and fully connected layer operations, by 
leveraging the SIMD vectorization capabilities of the ARM 
Cortex-A9 NEON vector unit in the PS of the FPGA. This 
approach enabled them to handle layers that cannot be easily 
implemented in PL. Liu et al. [75] proposed a PS-PL co-design 
structure, which comprises a PS that manages the model 
parameters and configuration and a PL that handles layer 
operations. The PS conveys the configuration and parameters 
to the PL through the AXI high-performance (HP) and AI 
general performance (GP) interfaces, respectively. On the PL 
side, the transferred parameters are used to process compute-
intensive operations in the CONV, pooling, and FC layers 
for acceleration. Notably, considering the massive FC layer 
operation, they suggested a method for determining whether 
to compute using PS or PL by identifying trade-offs to prevent 
transmission overhead. Through this design technique, 
inferences for various networks (e.g., AlexNet, VGG, and 
MobileNet) could be made. In their implementation, they 
achieved 206 GOPS for VGG network on Xilinx Zynq-7000 
XC7Z045 FPGA.

6  Performance comparison

A hardware performance comparison of various CNN 
accelerators is presented in Table  2. All accelerators 
are organized based on the implemented CNN models, 
documenting the data formats of the weights and activations 
that constitute these models. GOPS was used as a unit to 
measure throughput, which represents the computational 

capacity of a CNN accelerator per second. The throughput 
measurement, denoted as (conv), focuses specifically 
on the CONV layers rather than the entire network. The 
inference speed was based on FPS, which calculates the 
number of images that can be processed per second. All 
the resources (DSPs, LUTs, FFs, BRAMs) indicated HW 
utilization within the implemented FPGA chip. Notably, 
some studies such as those of Zhang et al. [44] and Song 
et al. [48] have implemented the VGG model utilizing a 
considerable amount of hardware resources, including DSP 
and LUT, to achieve high throughput performance, whereas 
Guo et al. [49] demonstrated the implementation of the same 
model with significantly fewer resources. These approaches 
highlight the efficiency and flexibility of utilizing hardware 
resources and demonstrate the practical applicability of 
accelerator designs. The performance difference (e.g., 
GOPS) between the studies of Zhang et al. [76] and Liu 
et al. [79] clearly demonstrates the advantages of applying 
quantization. Liu et al. [79] quantized weight and activation 
to 8-bit and 16-bit fixed-point formats, respectively, 
achieving 222.1 GOPS. In contrast, Zhang et al. [76] did 
not apply quantization (floating point 32-bit), obtaining a 
throughput of 61.6 GOPS, which indicates a decrease of 
approximately 72% compared to [79]. Additionally, the 
method of Zhang et al. [76] excelled by 152% in resource 
efficiency (GOPS/Slice) compared to that of Liu et  al. 
[79]. Zhang et al. [76] applied various techniques such as 
tiling, double buffering, and unrolling to minimize memory 
access and computation costs but did not achieve high 
throughput. Throughput can be improved by employing 
quantization and PU design approaches, such as multi-PU 
and SA configurations. Qiu et al. [53] and Liu et al. [75] 
utilized the same fixed-point format to explore the impact 
of bits allocated to the network ([53]: 16-bit, [75]: 8-bit) on 
GOPS. Research [75] applying lower-precision quantization, 
demonstrated an improvement of approximately 9% in 
GOPS compared with [53]. The presence or absence of 
quantization can significantly affect accelerator throughput, 
and the allocation of bits can be a key factor in enhancing 
throughput. However, it is important to note that low-
precision quantization may lead to a decrease in accuracy; 
thus, in designing an accelerator the trade-off between 
accuracy and throughput should be considered. Sun 
et al. [54] demonstrated the advantages of versatility by 
performing three different network inferences on a single 
FPGA platform to explore the relationships between network 
components. Additionally, to efficiently perform mixed-
precision computing, 4-bit and 8-bit data were reordered. If 
8-bit operations can be supported by reusing 4-bit operators, 
a higher throughput can be achieved.

Two studies by Nguyen et al. [13, 14] reduced DRAM 
access with aggressive mixed precision and layer fusing 
for all CONV operations, thereby demonstrating 32.5× and 
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131.3× higher throughput than the YOLO accelerator of Wu 
et al. [66]. Meng et al. [55] proposed an accelerator that 
exclusively leverages on-chip memory, eliminating DRAM 
access by applying high element-wise sparsity and low-pre-
cision quantization. Although this approach may introduce 
some loss in accuracy compared to other accelerators, it 
significantly reduces latency and achieves high throughput. 
Pacini et al. [35] significantly reduced the usage of filter 
and feature map buffers through a hierarchical cache system, 
implementing an accelerator with only 1.4 Mb of memory 
usage. Although the hierarchical cache system significantly 
reduces memory usage, power consumption is greater com-
pared to other accelerators because of the extensive use of 
LUTs and registers. Sun et al. [54] significantly reduced 
resource utilization and power consumption by integrating 
a mixed-precision quantization technique. Zhang et al. [44] 
despite utilizing memory optimization techniques such as 
tiling, were unable to prevent frequent off-chip memory 
access and a significant BRAM consumption of 44.9 Mb. 
To address these issues, we believe that employing a hier-
archical memory structure or fused-layer techniques can 
substantially reduce off-chip memory access and enhance 
BRAM utilization. Wei et al. [70] implemented AlexNet 
and VGG through an SA design, achieving high frequency 
and high throughput. Compared with the CONV inference 
of AlexNet designed by Zhang et al. [76], they achieved 
2.4× higher operating frequency and 5.9× higher throughput. 
Compared with the VGG designed by Ma et al. [43], with 
the same bit precision [70], obtained 1.8× superior GOPS. 
Nevertheless, notable limitations are the high computational 
load and significantly increased hardware resource consump-
tion, with an average of 3.38× and 1.45× compared to [43, 
76], respectively. Liu et al. [75] proposed a flexible inference 
of VGG and MobileNet using the same hardware implemen-
tation by effectively coordinating the PS. Meanwhile, Wu 
et al. [68] demonstrated the advantages of reusability by 
implementing various forms of MobileNet inference using 
a MobileNet-dedicated accelerator with a multi-PU design. 
These studies accelerate computations significantly, achiev-
ing performance gains of 147.2× and 16.5× , respectively, 
compared to [54, 75]. They also achieved significant reduc-
tions in hardware usage, including over threefold decrease 
in DSP and BRAM utilization and more than a five-fold 
reduction in LUTs, while exhibiting a remarkable 37.3× 
increase in FPS when implemented on the ZU2EG platform, 
surpassing the performance demonstrated by Liu et al. [75]. 
Thus, depending on the specific CNN and FPGA resource 
specifications, various network compression and optimiza-
tion techniques can be applied for computation and memory. 
In conclusion, by selecting the appropriate PE and data flow 
that match the characteristics of CNNs, the desired CNN 
accelerator can be designed.
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7  Conclusion

This paper investigates and analyzes previous 
studies with regard to architecture and optimization 
techniques of FPGA-based CNN accelerators. By 
employing optimization techniques such as parallel 
computing, memory access optimization, and reduction 
of computational workload, the overall processing 
speed can be improved, thereby minimizing the 
computational cost and maximizing the performance 
of the accelerator. Furthermore, through the design of 
accelerator architectures, data flow, memory structure, 
and computational types can be optimized, to reduce 
computational workload and enhance parallel processing.

The current research accomplishments on FPGA-based 
CNN accelerators have been instrumental in facilitating the 
commercial deployment of CNN inference, characterized 
by low power consumption and high throughput within 
embedded devices. However, CNN accelerators, with 
inherent features for dedicated network optimization, 
exhibit notably reduced compatibility compared to GPUs. 
Therefore, it is imperative that future research be steered 
toward the development of versatile accelerators capable 
of operating a variety of CNNs within a singular FPGA 
platform, and trainable accelerators that encompass 
back-propagation operations. In addition, it has become 
increasingly important to advance vision transformer 
(ViT) accelerator research, particularly for optimizing 
operations to facilitate multi-head self-attention (MSA) 
and FC in ViT.
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